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meshes, in particular meshes on Riemannian manifolds, even manifolds which cannot be
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people who want fine control on the mesh, e.g. for implementing their own meshing or
remeshing algorithms.

uses Eigen for storing matrices and solving systems of linear equations, see
http://eigen.tuxfamily.org/index.php?title=Main Page. Many drawings in this manual
have been produced by gmsh, see http://gmsh.info/

is just a collection of C++ classes. It has no user-friendly interface nor
graphic capabilities. The user should have some understanding of programming and of
C++. However, can be used at a basic level by people with no deep knowledge of
C++.

In its current version, 21.02, works quite well for mesh generation. Quotient
manifolds (section 5) and anisotropic meshing (paragraph 3.24) are not yet implemented.
Variational formulations (section 6) are not yet implemented. Finite elements (section
7) work in a rather rudimentary manner for now. To check which version of is
installed in your computer, see at the beginning of the file maniFEM.h.
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1. General description

This section is a quick tour through ’s capabilities.

1.1. An elementary example

In this paragraph, we show how to build a rectangular mesh on a surface in R
3

and then compute the integral of a given function. Paragraph 1.3 shows a purely two-
dimensional example.
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#include "maniFEM.h"

using namespace maniFEM;
using namespace std;

int main ()

{ // we choose our (geometric) space dimension :
Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );

// xyz is a map defined on our future mesh with values in RR3 :
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );

// we can extract components of xyz using the [] operator
Function x = xyz[0], y = xyz[1], z = xyz[2];

// Let’s build a rectangular mesh. First, the four corners :
Cell SW ( tag::vertex ); x(SW) = -1; y(SW) = 0; z(SW) = 0;
Cell SE ( tag::vertex ); x(SE) = 1; y(SE) = 0; z(SE) = 0;
Cell NE ( tag::vertex ); x(NE) = 1; y(NE) = 1; z(NE) = 0;
Cell NW ( tag::vertex ); x(NW) = -1; y(NW) = 1; z(NW) = 1;

// we access the coordinates of a point using the () operator :
cout << "coordinates of NW : " << x(NW) << " " << y(NW) << " " << z(NW) << endl;

// now build the four sides of the rectangle :
Mesh south ( tag::segment, SW.reverse(), SE, tag::divided_in, 10 );
Mesh east ( tag::segment, SE.reverse(), NE, tag::divided_in, 10 );
Mesh north ( tag::segment, NE.reverse(), NW, tag::divided_in, 10 );
Mesh west ( tag::segment, NW.reverse(), SW, tag::divided_in, 10 );



// and now the rectangle :
Mesh rect_mesh ( tag::rectangle, south, east, north, west );

// We may want to visualize the resulting mesh.
// Here is one way to export the mesh in the "msh" format :
rect_mesh.export_msh ("rectangle.msh");

// Let’s define a symbolic function to integrate
Function f = x*x+1/(5+y);
// and compute its integral on the rectangle,
// using Gauss quadrature with 9 points

// code below does not work yet

// Integrator integ ( tag::Gauss, tag::Q9 );
// cout << "integral = " << f.integrate ( rect_mesh, integ ) << endl;

} // end of main

After running this program (through make run-1.1), a file rectangle.msh should
appear in the working directory. You may view the mesh using the software gmsh.

Expressions like tag::of dim and tag::vertex are objects belonging to the namespace

tag; we use them as arguments to many functions. See paragraph 9.2 for some details.
When declaring a segment Mesh, we must reverse the first vertex (paragraph 1.2

discusses the reverse method). Paragraph 1.3 explains why we build the rectangle based
on its four sides rather than on its four vertices.

Note that in this example we do not have exact control on the shape of the surface
being meshed. It is defined rather vaguely by interpolating the coordinates of the four
corners. See sections 2 and 3 for ways to precisely define a submanifold in R

3 and mesh
(a bounded domain of) it.

1.2. Cells and meshes

In , all basic constituents of meshes are called “cells”. Points are zero-
dimensional cells, segments are one-dimensional cells, triangles are two-dimensional cells,
and so on.

A mesh is roughly a collection of cells of the same dimension. Internally,
keeps lists of cells of lower dimension, too. For instance, the mesh built in paragraph 1.1
is roughly a list of two-dimensional cells (quadrilaterals), but lists of segments and points
are also kept. This represents quite some amount of redundant information, but this is
what makes the classes fast, especially for remeshing.

A cell of dimension higher than zero is defined by its boundary, which in turn is
a mesh of lower dimension. The boundary of a segment is a (zero-dimensional) mesh
made of two points. The boundary of a triangle is a one-dimensional mesh made of three
segments. Thus, a segment is essentially a pair of points, a triangle is essentially a triplet
of segments, and so on.

Cells and meshes are oriented. An orientation of a mesh is just an orientation for
each of its component cells (of course these orientations must be mutually compatible).
Although this is not how the orientation is implemented internally (see paragraph 9.6),
an oriented point can be conceived simply as a point with a sign attached (1 or -1).



The orientation of a cell of dimension higher than zero is given by an orientation of its
boundary, which is a lower-dimensional mesh.

Thus, an oriented segment is essentially a pair of points, one of which has a -1
attached, the other having a 1. We call the former “base” and the latter “tip”. These
signs are related to integration of functions along that segment. The integral of a
function of one variable is equal to the value of the primitive function at one end of the
segment minus the value of the primitive at the other end.

An oriented triangle is essentially a triplet of segments, each one with its own
orientation. The orientations must be compatible to each other in the sense that each
vertex must be seen as positive by one of the segments and as negative by another one.
An oriented tetrahedron can be identified with four triangles, each one with its own
orientation. In such a tetrahedron, each segment must be seen as positive by one of the
triangles and as negative by another one.

Cells have a reverse method returning the reversed cell. Segment Cells have
methods base and tip returning their extremities. For instance :

Cell A ( tag::vertex ); Cell B ( tag::vertex );
assert ( A.is_positive() );
assert ( not A.reverse().is_positive() );
assert ( A.reverse().reverse() == A );
Cell AB ( tag::segment, A.reverse(), B );
// here, AB is a segment Cell, not a Mesh
assert ( AB.base() == A.reverse() );
assert ( AB.tip() == B );
Cell BA = AB.reverse();
assert ( BA.base() == B.reverse() );
assert ( BA.tip() == A );
assert ( BA().reverse() == AB );

Paragraph 8.7 gives more details about the orientation of cells. See also paragraph
9.3.

Cells are topological entities; they carry no geometric information. In particular,
points do not have coordinates. Coordinates are stored externally, see paragraph 7.1.

Meshes have a reverse method, too. It is used mainly when we want to join meshes
having a common piece of boundary; see e.g. paragraph 1.3.

1.3. Joining meshes

The example in paragraph 1.1 could have been shortened had we used the overloaded
version of the Mesh constructor with tag::rectangle which accepts the four corners as
arguments. This overloaded version exists in , but we prefer to build meshes
in a structured way, first corners, then sides and then the plane region. This has
the advantage that one can build more complex meshes from simple components. For
instance, one can build an L-shaped mesh by joining three rectangular meshes :

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];
Cell A ( tag::vertex ); x(A) = -1.; y(A) = 0.;



Cell B ( tag::vertex ); x(B) = 0.; y(B) = 0.;

Cell C ( tag::vertex ); x(C) = 0.; y(C) = 0.5;

Cell D ( tag::vertex ); x(D) = -1.; y(D) = 0.5;

Cell E ( tag::vertex ); x(E) = 0.; y(E) = 1.;

Cell F ( tag::vertex ); x(F) = -1.; y(F) = 1.;

Cell G ( tag::vertex ); x(G) = 1.; y(G) = 0.;

Cell H ( tag::vertex ); x(H) = 1.; y(H) = 0.5;

Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 10 );

Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 8 );

Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 10 );

Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 8 );

Mesh CE ( tag::segment, C.reverse(), E, tag::divided_in, 7 );

Mesh EF ( tag::segment, E.reverse(), F, tag::divided_in, 10 );

Mesh FD ( tag::segment, F.reverse(), D, tag::divided_in, 7 );

Mesh BG ( tag::segment, B.reverse(), G, tag::divided_in, 12 );

Mesh GH ( tag::segment, G.reverse(), H, tag::divided_in, 8 );

Mesh HC ( tag::segment, H.reverse(), C, tag::divided_in, 12 );

Mesh ABCD ( tag::rectangle, AB, BC, CD, DA );

Mesh CEFD ( tag::rectangle, CE, EF, FD, CD.reverse() );

Mesh BGHC ( tag::rectangle, BG, GH, HC, BC.reverse() );

Mesh L_shaped ( tag::join, ABCD, CEFD, BGHC );
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Meshes in R
2 like the one above may be exported in the msh format or directly drawn

in Postcript, by one of the two statements below

L_shaped.export_msh ("L-shaped.msh");

L_shaped.draw_ps ("L-shaped.eps");

Note that, in , cells and meshes are oriented. To build CEFD one must use
not CD but its reverse; to build BGHC one must use not BC but its reverse.

Note also that if we define the rectangles based on their vertices instead of their
sides, the Mesh constructor with tag::join does not work properly. For instance, the two
rectangles defined by

Mesh ABCD ( tag::rectangle, A, B, C, D, 10, 8 );

Mesh CEFD ( tag::rectangle, C, E, F, D, 7, 10 );



cannot be joined* because the side CD of ABCD has nothing to do with the side DC of
CEFD. These two sides are one-dimensional meshes both made of 10 segments but with
different interior points (only C and D are shared) and different segments. In contrast, CD
and CD.reverse() share the same 11 points and the same 10 segments (reversed).

See paragraph 8.2 for a more complex use of the Mesh constructor with tag::join.
Incidentally, note that the Mesh constructor with tag::rectangle accepts any position

for the vertices. Thus, you can use it to build any quadrilateral; the inner vertices’
coordinates are simply interpolated from the coordinates of vertices on the boundary,
as shown in paragraphs 1.5 and 2.1. This can be done even in more than two
(geometric) dimensions, like in paragraphs 1.1 and 2.6. Tags rectangle, quadrilateral

and quadrangle can be used interchangeably.
See also paragraph 9.7.

1.4. Triangular meshes

We can also build meshes on triangular domains and join them as we wish :

Cell A ( tag::vertex ); x(A) = -1. ; y(A) = 0.;
Cell B ( tag::vertex ); x(B) = 0. ; y(B) = 0.;
Cell C ( tag::vertex ); x(C) = 1. ; y(C) = 0.;
Cell D ( tag::vertex ); x(D) = -0.5; y(D) = 1.;
Cell E ( tag::vertex ); x(E) = 0.5; y(E) = 1.;
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 8 );
Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 8 );
Mesh AD ( tag::segment, A.reverse(), D, tag::divided_in, 8 );
Mesh BD ( tag::segment, B.reverse(), D, tag::divided_in, 8 );
Mesh BE ( tag::segment, B.reverse(), E, tag::divided_in, 8 );
Mesh CE ( tag::segment, C.reverse(), E, tag::divided_in, 8 );
Mesh ED ( tag::segment, E.reverse(), D, tag::divided_in, 8 );
Mesh ABD ( tag::triangle, AB, BD, AD.reverse() );
Mesh BCE ( tag::triangle, BC, CE, BE.reverse() );
Mesh BED ( tag::triangle, BE, ED, BD.reverse() );
Mesh three_tri ( tag::join, ABD, BCE, BED );
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* Actually, they can be joined but the resulting mesh will have a crack along CD – probably not what the user
wants.



1.5. Mixing triangles and rectangles

It is possible to have triangles and quadrilaterals mixed in the same mesh :
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Mesh ABD ( tag::triangle, AB, BD, AD.reverse() );
Mesh BCE ( tag::triangle, BC, CE, BE.reverse() );
Mesh BEFD ( tag::quadrangle, BE, EF, FD, BD.reverse() );
Mesh two_tri_one_rect ( tag::join, ABD, BEFD, BCE );

Paragraph 2.2 shows another example of mixed mesh.

1.6. Functions

Objects like xyz and x encountered in previous paragraphs are Function objects.
They allow for arithmetic expressions like in

Function norm = power ( x*x + y*y, 0.5 );

We access the value of a Function at a cell like in double n = norm(A). We can also set
this value but not for arithmetic expressions like norm. Thus, pieces of code like x(A) = 1.

work fine, while norm(A) = 1. produces a run-time error.
The Function::deriv method performs symbolic differentiation :

Function norm_x = norm.deriv ( x );
Function norm_y = norm.deriv ( y );



2. Meshes and manifolds

This section describes several examples of meshes, some of them built on specific
manifolds. Note that in this manual we use the term “manifold” to mean a manifold
without boundary.

Paragraphs 2.3, 2.4, 2.8, and 2.9 deal with one-dimensional meshes (curves) in R
2,

paragraphs 2.11, 2.12, 2.13 and 2.14 show curves in R
3, paragraphs 2.1, 2.2, 2.8 and 2.9

show plane domains (two-dimensional meshes in R
2), while paragraphs 2.5, 2.6, 2.7, 2.11,

2.12, 2.15 and 2.16 focus on two-dimensional meshes in R
3 (surfaces).

Paragraphs 2.3 – 2.12 are about manifolds defined implicitly as level sets; paragraphs
2.13 – 2.16 describe parametric manifolds.

2.1. Joining segments

Here is another way of meshing the same L-shaped domain as in paragraph 1.3 :
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Mesh AG ( tag::segment, A.reverse(), G, tag::divided_in, 22 );
Mesh GH ( tag::segment, G.reverse(), H, tag::divided_in, 8 );
Mesh HC ( tag::segment, H.reverse(), C, tag::divided_in, 12 );
Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 10 );
Mesh HD ( tag::join, HC, CD );
Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 8 );
Mesh CE ( tag::segment, C.reverse(), E, tag::divided_in, 7 );
Mesh EF ( tag::segment, E.reverse(), F, tag::divided_in, 10 );
Mesh FD ( tag::segment, F.reverse(), D, tag::divided_in, 7 );
Mesh AGHD ( tag::rectangle, AG, GH, HD, DA );
Mesh CEFD ( tag::rectangle, CE, EF, FD, CD.reverse() );
Mesh L_shaped ( tag::join, AGHD, CEFD );

The only difference between this mesh an the one presented in paragraph 1.3 is a
slight distortion in the lower half of the domain, due to the non-uniform distribution of
the vertices along HD.

See paragraph 9.2 for more details about tags. See also paragraph 9.7.



2.2. Triangular meshes on rectangles

On a rectangular domain, we can build a mesh of triangles by using the Mesh

constructor with tag::rectangle, providing as last argument the tag::with triangles.
For instance, in the example 1.3, if we re-write the definition of BGHC as

Mesh BGHC ( tag::rectangle, BG, GH, HC, BC.reverse(), tag::with_triangles );

we get the mesh shown below.
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If we give the sides of the rectangle in a different order, like in

Mesh BGHC ( tag::rectangle, GH, HC, BC.reverse(), BG, tag::with_triangles );

the rectangles will be cut along the other diagonal (check it yourself).
The mesh in paragraph 1.4 could have been built like this :

Mesh ABD ( tag::triangle, AB, BD, AD.reverse() );
Mesh BCED ( tag::quadrangle, CE, ED, BD.reverse(), BC, tag::with_triangles );
Mesh one_tri_one_rect ( tag::join, ABD, BCED );

2.3. A manifold defined as a level set in R
2

allows one to define manifolds and submanifolds, and this feature may be
used to build domains of the desired shape.

Until now, we have only met the trivial Euclidian manifold, defined as Manifold

( tag::Euclid, tag::of dim, n ). One can define a submanifold in terms of an implicit
equation, that is, as a level set, using the method implicit of the Euclidian manifold.
The code below introduces a one-dimensional submanifold of R2 (a hiperbola).

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

Manifold hiperbola = RR2.implicit ( x*y == 1. );

Cell A ( tag::vertex ); x(A) = 0.5; y(A) = 2.;
Cell B ( tag::vertex ); x(B) = 3; y(B) = 0.333333333333;
Mesh arc_of_hiperbola ( tag::segment, A.reverse(), B, tag::divided_in, 7 );
arc_of_hiperbola.draw_ps ("hiperbola.eps");
arc_of_hiperbola.export_msh ("hiperbola.msh");
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In gmsh, you must select Tools → Options → Mesh → 1D Elements in order to see this
mesh.

Note that the vertices are not perfectly uniformly distributed along the curve
because they are obtained as projections of points uniformly distributed along the
straight segment AB onto the hiperbola manifold.

Note also that when defining individual points A and B we must be careful to set
coordinates x and y within the hiperbola manifold. As an alternative, we might explicitly
project them onto the hiperbola like this :

Cell P ( tag::vertex ); x(P) = 0.6; y(P) = 2.1;
hiperbola.project(P);

In contrast, the Mesh constructor with tag::segment builds points in the RR2 space and
then projects them onto the hiperbola without the user’s assistance.

The projection is done by applying a few steps of Newton’s method for under-
determined (systems of) equations.* Thus, it only works as expected for a point not too
far from the manifold.

Paragraph 3.5 shows another way of meshing a curve, producing equidistant vertices.

2.4. A circle defined by four curved segments

We can define several arcs of curve and join them, thus obtaining a closed curve :

Manifold circle_manifold = RR2.implicit ( x*x + y*y == 1. );
Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.;
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.;
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 5 );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, 5 );
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, 5 );
Mesh EN ( tag::segment, E, N.reverse(), tag::divided_in, 5 );
Mesh circle ( tag::join, NW, WS, SE, EN );

* See e.g. Appendix B in C. Barbarosie, A.M. Toader, S. Lopes, A gradient-type algorithm for constrained
optimization with application to microstructure optimization, Discrete and Continuous Dynamical Systems
series B, 25, p. 1729-1755, 2020
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Again, the vertices are not perfectly uniformly distributed along the circle because
they are obtained as projections (on the circle) of points along straight segments NW, WS
and so forth.

Note that applying the Mesh constructor with tag::join to four segments is very
different from applying the Mesh constructor with tag::quadrangle to the same four
segments; see paragraph 2.8.

Paragraph 3.2 shows another way of meshing a closed curve, producing equidistant
vertices.

2.5. A hemisphere defined by four curved triangles

Let’s look at a surface in R
3 :

Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xyz[0], y = xyz[1], z = xyz[2];

Manifold sphere = RR3.implicit ( x*x + y*y + z*z == 1. );

// let’s mesh half of a sphere
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.; z(E) = 0.;
Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.; z(N) = 0.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.; z(W) = 0.;
Cell S ( tag::vertex ); x(W) = 0.; y(W) = -1.; z(W) = 0.;
Cell up ( tag::vertex ); x(up)= 0.; y(up)= 0.; z(up)= 1.;
int n = 15;
Mesh EN ( tag::segment, E.reverse(), N, tag::divided_in, n );
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, n );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, n );
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, n );
Mesh upE ( tag::segment, up.reverse(), E, tag::divided_in, n );
Mesh upN ( tag::segment, up.reverse(), N, tag::divided_in, n );
Mesh upW ( tag::segment, up.reverse(), W, tag::divided_in, n );
Mesh upS ( tag::segment, up.reverse(), S, tag::divided_in, n );



// build four triangles
Mesh ENup ( tag::triangle, EN, upN.reverse(), upE );
Mesh NWup ( tag::triangle, NW, upW.reverse(), upN );
Mesh WSup ( tag::triangle, WS, upS.reverse(), upW );
Mesh SEup ( tag::triangle, SE, upE.reverse(), upS );

// and finally join the triangles :
Mesh hemisphere ( tag::join, ENup, NWup, WSup, SEup );
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Again, when we define individual points E, N, W, S and up we must be careful to
provide coordinates on the sphere (or project them explicitly as shown in paragraph 2.6).
In contrast, the Mesh constructors with tag::segment, tag::quadrangle and tag::triangle

build points in the surrounding space (R2 or R3) and then project them onto the current
manifold without the user’s assistance. The projection is done by applying a few steps of
Newton’s method for under-determined (systems of) equations.* As a side effect, within
each triangle (ENup, NWup and so forth), the distribution of the vertices is not perfectly
uniform.

Note that, when we build the segments WS, upS and so on, we know that those
segments will be (polygonal approximatins of) arcs of circle on the sphere. This is so
due to the particular geometry of our manifold (we know that the projection of a straight
line segment on the sphere is an arc of circle of radius equal to the radius of the sphere);
the shape of such segments is less clear in other examples (like the one in paragraph 2.6).

Section 3 shows other ways of meshing a surface.

2.6. A more complex surface

If the surface is more “bumpy”, we must use smaller patches in order to get a mesh
of good quality.

* See e.g. Appendix B in C. Barbarosie, A.M. Toader, S. Lopes, A gradient-type algorithm for constrained
optimization with application to microstructure optimization, Discrete and Continuous Dynamical Systems
series B, 25, p. 1729-1755, 2020



Below we use twelve rectangles to get a bumpy hemisphere.

Manifold nut = RR3.implicit ( x*x + y*y + z*z + 1.5*x*y*z == 1. );

// let’s mesh a hemisphere (much deformed)
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.; z(E) = 0.;
Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.; z(N) = 0.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.; z(W) = 0.;
Cell up ( tag::vertex ); x(up) = 0.; y(up) = 0.; z(up) = 1.;
// no need to project these
Cell mSW ( tag::vertex ); x(mSW) = -1.; y(mSW) = -1.; z(mSW) = 0.;
nut.project ( mSW ); // midway between S and W
Cell mSup ( tag::vertex ); x(mSup) = 0.; y(mSup) = -1.; z(mSup) = 1.;
nut.project ( mSup ); // midway between S and up
Cell mSWup ( tag::vertex ); x(mSWup) = -1.; y(mSWup) = -1.; z(mSWup) = 1.;
nut.project ( mSWup ); // somewhere between S, W and up
// ... and so forth ...
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// now build segments :
int n = 10;
Mesh W_mSW ( tag::segment, W.reverse(), mSW, tag::divided_in, n );
Mesh W_mWup ( tag::segment, W.reverse(), mWup, tag::divided_in, n );
// ... and so forth ...

// now the twelve rectangles :
Mesh rect_W_SW ( tag::quadrangle,

mSW_mSWup, mWup_mSWup.reverse(), W_mWup.reverse(), W_mSW );
Mesh rect_S_SW ( tag::quadrangle,

mSup_mSWup, mSW_mSWup.reverse(), S_mSW.reverse(), S_mSup );
Mesh rect_up_SW ( tag::quadrangle,

mWup_mSWup, mSup_mSWup.reverse(), up_mSup.reverse(), up_mWup );
// ... and so forth ...



// and finally join the rectangles :
Mesh hemisphere ( tag::join,

{ rect_E_NE, rect_E_SE, rect_S_SE, rect_S_SW, rect_W_SW, rect_W_NW,
rect_N_NE, rect_N_NW, rect_up_SE, rect_up_SW, rect_up_NE, rect_up_NW } );

Note how we use a version of the Mesh constructor with tag::join taking as
argument a list of Meshes; the same constructor is used in paragraph 8.2.

Unlike in paragraph 2.5, here we do not control the exact shape of the segments
S mSW, S mSup and so on. They are projections of straight line segments onto our surface
but since the equation of the surface is rather complicated we do not know the exact
shape of these projections. Since points like mSW and mSE have been placed initially in RR3

not belonging to the bupmy manifold and then explicitly projected, there is no guarantee
that they lie in the plane z = 0 (they probably don’t). We notice an angle between W mSW

and S mSW at mSW.
Paragraph 2.12 shows a way to control the shape of the segments S mSW, S mSE and so

on.
Section 3 shows other ways of meshing a surface.

2.7. Exercise

Slightly change the code in paragraph 2.6 in order to obtain the mesh below. (Hint:
have a look at paragraph 2.2.)
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2.8. Alternating between manifolds

Let’s go back to the example in paragraph 2.4. Suppose we want to mesh the whole
disk, not just its boundary. We can build the boundary of the disk just like in paragraph
2.4, by placing ourselves in the manifold circle. But if we want to mesh the interior of
the disk, we must leave circle and switch back to the original RR2 manifold. Method
set as working manifold allows us to do that.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

Manifold circle = RR2.implicit ( x*x + y*y == 1. );

Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.;
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.;
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 10 );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, 10 );
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, 10 );
Mesh EN ( tag::segment, E.reverse(), N, tag::divided_in, 10 );

RR2.set_as_working_manifold();
Mesh disk ( tag::quadrangle, NW, WS, SE, EN );
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The mesh is of poor quality; we obtain quadrilaterals having a wide angle near S, N,
E and W. Paragraphs 3.1 and 3.2 show another way of meshing a disk, having its boundary
as starting point.

Each time a Manifold object is created, its constructor sets it as working manifold;
this is why in many cases we don’t need to know about method set as working manifold.
We need it, however, in cases like the one presented here.



2.9. Alternating between manifolds, again

Here is an example similar to the one in paragraph 2.8, this time with four arcs of
hiperbola.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.;
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.;

Manifold first_arc = RR2.implicit ( x*y + x - y == -1. );
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 10 );
Manifold second_arc = RR2.implicit ( x*y - x - y == 1. );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, 10 );
Manifold third_arc = RR2.implicit ( x*y - x + y == -1. );
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, 10 );
Manifold fourth_arc = RR2.implicit ( x*y + x + y == 1. );
Mesh EN ( tag::segment, E.reverse(), N, tag::divided_in, 10 );

RR2.set_as_working_manifold();
Mesh diamond ( tag::quadrangle, NW, WS, SE, EN );
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Paragraph 3.17 shows another way of meshing the same domain.



2.10. An organic shape

This paragraph describes a surface meant to mimik the shape of a physalis fruit.

We begin by defining a revolution surface in R
3 :

Function r2 = x*x + y*y + z*z;
const double pi = 3.1415926536;
Manifold apple = RR3.implicit ( power(r2,0.5) * sin(r2-pi/6.) == z );

This surface has the shape shown below, which does not resemble a physalis fruit.



Instead of meshing the apple surface, we just build eight curves immersed in it (each
curve joins A to D and is made of three segments) :

Cell A ( tag::vertex ); x(A) = 0.; y(A) = 0.; z(A) = std::sqrt ( 2.*pi/3. );
Cell B1 ( tag::vertex ); x(B1) = 1.; y(B1) = 0.; z(B1) = 1.;
Cell C1 ( tag::vertex ); x(C1) = 1.; y(C1) = 0.; z(C1) = 0.;
apple.project (B1); apple.project (C1);
Cell D ( tag::vertex ); x(D) = 0.; y(D) = 0.; z(D) = 0.;
Mesh AB1 ( tag::segment, A.reverse(), B1, tag::divided_in, 10 );
Mesh B1C1 ( tag::segment, B1.reverse(), C1, tag::divided_in, 10 );
Mesh C1D ( tag::segment, C1.reverse(), D, tag::divided_in, 10 );
// and so on ...

Then we switch back to RR3 (thus leaving the apple manifold) and build transversal
segments, as well as triangular and quadrangular patches :

RR3.set_as_working_manifold();
Mesh B1B2 ( tag::segment, B1.reverse(), B2, tag::divided_in, 10 );
Mesh B2B3 ( tag::segment, B2.reverse(), B3, tag::divided_in, 10 );
// and many other segments ...
Mesh AB1B2 ( tag::triangle, AB1, B1B2, AB2.reverse() );
Mesh AB2B3 ( tag::triangle, AB2, B2B3, AB3.reverse() );
// and other triangular patches ...
Mesh B1C1C2B2 ( tag::quadrangle, B1C1, C1C2, B2C2.reverse(), B1B2.reverse(),

tag::with_triangles );
Mesh B2C2C3B3 ( tag::quadrangle, B2C2, C2C3, B3C3.reverse(), B2B3.reverse(),

tag::with_triangles );
// and other quadrangular patches ...

We then join all patches :

Mesh sect1 ( tag::join, AB1B2, B1C1C2B2, C1DC2 );
Mesh sect2 ( tag::join, AB2B3, B2C2C3B3, C2DC3 );
// more sectors ...
std::list < Mesh > lm { sect1, sect2, sect3, sect4, sect5, sect6, sect7, sect8 };
Mesh fisalis ( tag::join, lm );



This shape is still not satisfactory, so we apply a deformation in R
3 in order to get a

sharper tip. The apple manifold is no longer relevant.

CellIterator it = fisalis.iter_over ( tag::vertices );
for ( it.reset(); it.in_range(); it++ )
{ Cell P = *it;

x(P) *= 0.8; y(P) *= 0.8;
if ( z(P) > 1.3 )
{ x(P) = x(P) / ( 1. + 300. * std::pow ( z(P) - 1.3, 3. ) );

y(P) = y(P) / ( 1. + 300. * std::pow ( z(P) - 1.3, 3. ) );
z(P) = z(P) * ( 1. + 10. * ( z(P) - 1.3 ) * ( z(P) - 1.3 ) ); }

if ( z(P) > 0. ) z(P) *= 0.8; }

We add a sequence of baricenter operations for smoothening the shape. Note that
each baricenter operation is relative to a sector and it applies only to inner vertices, so
the boundary of the sector is not changed. Thus, the eight rims defined in the beginning
are kept unchanged.

std::list<Mesh>::iterator it1;
for ( it1 = lm.begin(); it1 != lm.end(); it1++ )
{ Mesh sect = *it1;

CellIterator it2 = sect.iter_over ( tag::cells_of_dim, 1 );
for ( int i = 1; i < 20; i++ )
for ( it2.reset(); it2.in_range(); it2++ )
{ Cell seg = *it2;

sect.baricenter ( seg.tip(), seg );
seg = seg.reverse();
sect.baricenter ( seg.tip(), seg ); } }

And we are happy with the final result :



2.11. A manifold defined by two equations

We can define a one-dimensional submanifold of R3 by two implicit equations :

Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xyz[0], y = xyz[1], z = xyz[2];

Manifold circle_manifold = RR3.implicit ( x*x + y*y == 1., x*y == 4.*z );
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.; z(E) = 0.;
Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.; z(N) = 0.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.; z(W) = 0.;
// these four points already belong to ’circle_manifold’, no projection needed
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, 5 );
Mesh EN ( tag::segment, E.reverse(), N, tag::divided_in, 5 );
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 5 );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, 5 );
Mesh circle ( tag::join, SE, EN, NW, WS );
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Paragraph 3.4 shows another way of meshing the same loop.

2.12. A submanifold of a submanifold

An implicit manifold has submanifolds. For instance, we can improve the look of
the “bumpy hemisphere” in paragraph 2.6 by building its base (a circle-like closed curve)
inside a one-dimensional manifold. For the rest of the surface, we switch back to the two-
dimensional manifold nut :

Manifold nut = RR3.implicit ( x*x + y*y + z*z + 1.5*x*y*z == 1. );
int n = 10;

// first build the base (a closed curve)
Manifold base = nut.implicit ( x*x + 3.*z == 0. );

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.; z(E) = 0.;
Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.; z(N) = 0.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.; z(W) = 0.;
// no need to project S and N, they are already on ’base’
base.project(E); base.project(W);
Cell mSW ( tag::vertex ); x(mSW) = -1.; y(mSW) = -1.; z(mSW) = 0.;
base.project ( mSW ); // midway between S and W
Cell mSE ( tag::vertex ); x(mSE) = 1.; y(mSE) = -1.; z(mSW) = 0.;
base.project ( mSE ); // midway between S and E
// define similarly mNE and mNW



// now build eight segments, forming the base
Mesh W_mSW ( tag::segment, W.reverse(), mSW, tag::divided_in, n );
Mesh S_mSW ( tag::segment, S.reverse(), mSW, tag::divided_in, n );
// define similarly S_mSE, E_mSE, E_mNE, N_mNE, N_mNW, W_mNW

// we are done with the base, now switch back to ’nut’
nut.set_as_working_manifold();

// more points :
Cell up ( tag::vertex ); x(up) = 0.; y(up) = 0.; z(up) = 1.;
// no need to project ’up’, it is already on ’nut’
Cell mSup ( tag::vertex ); x(mSup) = 0.; y(mSup) = -1.; z(mSup) = 1.;
nut.project ( mSup ); // midway between S and up
Cell mSWup ( tag::vertex ); x(mSWup) = -1.; y(mSWup) = -1.; z(mSWup) = 1.;
nut.project ( mSWup ); // somewhere between S, W and up
// ... and so forth ...

// more segments :
Mesh W_mWup ( tag::segment, W.reverse(), mWup, tag::divided_in, n );
Mesh mSW_mSWup ( tag::segment, mSW.reverse(), mSWup, tag::divided_in, n );
Mesh mWup_mSWup ( tag::segment, mWup.reverse(), mSWup, tag::divided_in, n );
// ... and so forth ...
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If we wanted a flat base, we could have defined

Manifold base = nut.implicit ( z == 0. );

Paragraph 3.9 shows a way to mesh the same surface using fewer lines of code.

2.13. Parametric manifolds – a curve

Paragraphs 2.3 – 2.12 describe manifolds defined through implicit equations, that
is, level sets in R

2 or R
3. Another way of defining a submanifold is through a

parametrization. Below is an example.

// at the beginning, we define ’spiral’ as a straight line
Manifold spiral ( tag::Euclid, tag::of_dim, 1 );
Function t = spiral.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );



// now build ’arc_of_spiral’ merely as a segment from pi/2 to 5 pi
const double pi = 3.1415926536;
Cell A ( tag::vertex ); t(A) = pi/2.;
Cell B ( tag::vertex ); t(B) = 5.*pi;
Mesh arc_of_spiral ( tag::segment, A.reverse(), B, tag::divided_in, 30 );

// not very interesting for now
// but now define functions x and y as expressions of t :
Function x = t*cos(t), y = t*sin(t);

// and declare them to be the new coordinates on the ’spiral’ manifold
spiral.set_coordinates ( x && y );

// in future statements (e.g. for graphical representation)
// x and y will be used, not t :
arc_of_spiral.draw_ps ("spiral.eps");
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The operator && joins two functions into one vector function.
Note that, when defining points A and B, we only set the value of t. Functions x and

y are defined later, as arithmetic expressions in terms of t; their values will be computed
“on-the-fly” when needed. In the drawing above, we note that the generated points are
not equidistant in the sense of the Euclidian distance in R

2. They correspond to values
of t which are uniformly distributed between π/2 (at A) and 5π (at B).

The approach described above has the disadvantage that, if we want to subsequently
change the distribution of nodes along the arc of spiral, we must switch back to the
original t coordinate.

Paragraph 3.5 shows another way of meshing a curve, producing equidistant vertices.

2.14. Closing a circle

In the approach of paragraph 2.13, it is possible but cumbersome to build a closed
curve :

Manifold circle_manif ( tag::Euclid, tag::of_dim, 1 );
Function t = circle_manif.build_coordinate_system

( tag::Lagrange, tag::of_degree, 1 );



// build ’circle’ merely as a segment from 0 to 1.9 pi
const double pi = 3.1415926536;
Cell A ( tag::vertex ); t(A) = 0.;
Cell B ( tag::vertex ); t(B) = 1.9*pi;
Mesh circle ( tag::segment, A.reverse(), B, tag::divided_in, 19 );

// now close the curve in a not very elegant manner
Cell BA ( tag::segment, B.reverse(), A );
BA.add_to ( circle );

// define new coordinates on circle_manif as expressions of t :
Function x = cos(t), y = sin(t);
circle_manif.set_coordinates ( x && y );

// in future statements (e.g. for graphical representation)
// x and y will be used, not t :
circle.draw_ps ("circle.eps");

Paragraph 5.4 shows a more elegant way to close a curve in itself.
On the other hand, if we only want a visual illusion of a closed circle, we may use

the code below.

Manifold circle_manif ( tag::Euclid, tag::of_dim, 1 );
Function t = circle_manif.build_coordinate_system

( tag::Lagrange, tag::of_degree, 1 );

// build ’circle’ merely as a segment from 0 to 2 pi
const double pi = 3.1415926536;
Cell A ( tag::vertex ); t(A) = 0.;
Cell B ( tag::vertex ); t(B) = 2.*pi;
Mesh circle ( tag::segment, A.reverse(), B, tag::divided_in, 20 );
// gives the illusion of a closed circle

// define new coordinates on circle_manif as expressions of t :
Function x = cos(t), y = sin(t);
circle_manif.set_coordinates ( x && y );

2.15. Parametric manifolds – a surface

Here is an example of a parametrized surface :

Manifold torus ( tag::Euclid, tag::of_dim, 2 );
Function alpha_beta =

torus.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
// extract components of alpha_beta :
Function alpha = alpha_beta[0], beta = alpha_beta[1];

// build a rectangle in the alpha-beta plane
const double pi = 3.1415926536;
Cell A ( tag::vertex ); alpha(A) = 0.; beta(A) = 0.;
Cell B ( tag::vertex ); alpha(B) = 0.; beta(B) = 1.9*pi;
Cell C ( tag::vertex ); alpha(C) = 1.95*pi; beta(C) = 1.9*pi;
Cell D ( tag::vertex ); alpha(D) = 1.95*pi; beta(D) = 0.;
// four almost-closed circles :
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 19 );



Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 39 );
Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 19 );
Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 39 );
Mesh ABCD ( tag::rectangle, AB, BC, CD, DA ); // an almost-closed torus

// parametrize the torus
const double big_radius = 3., small_radius = 1.;
Function x = ( big_radius + small_radius * cos(beta) ) * cos(alpha),

y = ( big_radius + small_radius * cos(beta) ) * sin(alpha),
z = small_radius * sin(beta);

// forget about alpha and beta :
torus.set_coordinates ( x && y && z );
// in future statements (e.g. for graphical representation)
// x, y and z will be used, not alpha nor beta :
ABCD.export_msh ("torus.msh");

4

y

2
0

-2
-4

-1

-4

1
z

0

4
x

Closing the torus in the cumbersome manner shown in paragraph 2.14 is possible but
not practical. Paragraph 5.6 shows a more elegant solution.

If we only want a visual illusion of a closed surface, we may use the code below

Cell A ( tag::vertex ); alpha(A) = 0.; beta(A) = 0.;
Cell B ( tag::vertex ); alpha(B) = 0.; beta(B) = 2.*pi;
Cell C ( tag::vertex ); alpha(C) = 2.*pi; beta(C) = 2.*pi;
Cell D ( tag::vertex ); alpha(D) = 2.*pi; beta(D) = 0.;
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 20 );
Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 40 );
Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 20 );
Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 40 );
// AB, BC, CD and DA look like closed circles
Mesh ABCD ( tag::rectangle, AB, BC, CD, DA );
// ABCD gives the illusion of a closed torus

2.16. Starting with a high-dimensional manifold

Instead of starting with a manifold having only the parameter(s), we may start with
a high-dimensional manifold containing both the geometric coordinates and the parame-
ter(s), then define the parametrization through equation(s). There is a disadvantage how-
ever, regarding performance; see paragraph . . .



Manifold RR5 ( tag::Euclid, tag::of_dim, 5 );
Function xyzab = RR5.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );

// extract components of xyzab :
Function x = xyzab[0], y = xyzab[1], z = xyzab[2], alpha = xyzab[3], beta = xyzab[4];

// define a torus as a submanifold of RR5 :
const double big_radius = 3, small_radius = 1;
Manifold torus = RR5.parametric

( x == ( big_radius + small_radius * cos(beta) ) * cos(alpha),
y == ( big_radius + small_radius * cos(beta) ) * sin(alpha),
z == small_radius * sin(beta) );

// define four corners
const double pi = 3.1415926536;
Cell A ( tag::vertex ); alpha(A) = 0.; beta(A) = 0.; torus.project(A);
Cell B ( tag::vertex ); alpha(B) = 0.; beta(B) = 1.9*pi; torus.project(B);
Cell C ( tag::vertex ); alpha(C) = 1.95*pi; beta(C) = 1.9*pi; torus.project(C);
Cell D ( tag::vertex ); alpha(D) = 1.95*pi; beta(D) = 0.; torus.project(D);
// four almost-closed circles :
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 19 );
Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 39 );
Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 19 );
Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 39 );
// build a rectangle
Mesh ABCD ( tag::rectangle, AB, BC, CD, DA ); // an almost-closed torus

// forget about alpha and beta :
torus.set_coordinates ( x && y && z );
// in future statements (e.g. for graphical representation)
// x, y and z will be used, not alpha nor beta :
ABCD.export_msh ("torus.msh");

The Manifold::parametric method is similar to Manifold::implicit, presented in
paragraphs 2.3 – 2.12. The only difference is that by using parametric we declare an
explicit dependence* of the coordinates (here, x, y and z) upon the parameters (here,
alpha and beta). This endows the manifold torus with a different projection operator.
The projection of a vertex from RR5 onto torus is done by merely updating the values of
x, y and z, while keeping alpha and beta constant.

* Perhaps explicit would be a better name than parametric; unfortunately, that word is reserved in C++.



3. Progressive mesh generation

Section 2 shows how to build meshes by joining rectangles and triangles together,
like patches. The present section explains how to build a mesh starting from its boundary
only; we call this approach “progressive mesh generation”. It consists of starting with a
given interface and add triangles, one by one, moving and deforming the interface, until
it shrinks and disappears. In some cases (like in paragraphs 3.2, 3.4, 3.6, 3.7) we begin
with nothing at all; finds a starting point by itself.

Progressive mesh generation works with segment cells (for one-dimensional meshes)
and triangular cells (for two-dimensional meshes). Meshing of three-dimensional domains
will be implemented in the future and will use tetrahedral cells.

Progressive mesh generation follows the shape of the current working manifold (the
most recently declared Manifold object) by projecting each newly constructed vertex on
that manifold. Recall that in this manual we use the term “manifold” to mean a manifold
without boundary.

3.1. Filling a disk

Paragraph 2.8 shows how to build a mesh over a disk, but the quality of the mesh is
quite poor. This is so because the Mesh constructor with tag::quadrangle treats the disk
as a (much) deformed rectangle.

We can ask to progressively mesh the disk, starting from its boundary (a
circle) and adding triangles, one by one, until the disk is completely covered :
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Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );

Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];



Manifold circle_manif = RR2.implicit ( x*x + y*y == 1. );

Cell N ( tag::vertex ); x(N) = 0.; y(N) = 1.;
Cell W ( tag::vertex ); x(W) = -1.; y(W) = 0.;
Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.;
Cell E ( tag::vertex ); x(E) = 1.; y(E) = 0.;
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 10 );
Mesh WS ( tag::segment, W.reverse(), S, tag::divided_in, 10 );
Mesh SE ( tag::segment, S.reverse(), E, tag::divided_in, 10 );
Mesh EN ( tag::segment, E.reverse(), N, tag::divided_in, 10 );
Mesh circle ( tag::join, NW, WS, SE, EN );

RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, circle, tag::desired_length, 0.157 );

We provide the desired length of the segments of the future mesh as an argument to
the constructor. Of course the length of the segments inside the mesh will vary slightly.
We must take care to give as boundary a curve with segments of length approximatively
equal to the desired length (paragraph 3.16 discusses this requirement).

Paragraph 9.2 gives more details about tags.

3.2. Meshing a circle

Instead of building the circle by joining four (curved) segments, we can mesh directly
the circle manifold, then mesh the disk :

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

Manifold circle_manif = RR2.implicit ( x*x + y*y == 1. );
Mesh circle ( tag::progressive,

tag::entire_manifold, circle_manif, tag::desired_length, 0.2 );
// we can omit the manifold; maniFEM will take the current working manifold :
// Mesh circle ( tag::progressive, tag::desired_length, 0.2 );

RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, circle, tag::desired_length, 0.2 );
disk.draw_ps ("disk.eps");

The code above is quite comfortable for the user; he or she only needs to define the
manifold(s) to be meshed and provide the desired (average) length of segments in the
future mesh. However, this comfort comes at the price of a significant computational
effort. For building the circle, must first find a starting point for the process of
progressive mesh generation. In extreme cases, the algorithm may fail to find a starting
point on the given manifold.

The user may choose to be more specific in order to save computation time, by
providing a starting point :

Cell A ( tag::vertex ); x(A) = 1.; y(A) = 0.;
Mesh circle ( tag::progressive, tag::start_at, A, tag::desired_length, 0.2 );

Also, must infer the right orientation of the circle as explained in
paragraphs 3.10 and 3.13. Choosing the other orientation would result in an endless



process of meshing the exterior of the disk. The process of choosing the right orientation
implies some computational effort. The user can make things easier for either
by attaching an orientation to the manifold circle manif (this feature is not implemented
yet) or by providing the initial direction as shown in paragraph 3.12.

3.3. Inner boundaries

Inner boundaries must have the reverse orientation :

Manifold circle = RR2.implicit ( x*x + y*y == 1. );
Mesh outer ( tag::progressive, tag::desired_length, 0.1 );
Manifold ellipse = RR2.implicit ( x*x + (y-0.37)*(y-0.37) + 0.3*x*y == 0.25 );
Mesh inner ( tag::progressive, tag::desired_length, 0.1 );
Mesh bdry ( tag::join, outer, inner.reverse() );
RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, bdry, tag::desired_length, 0.1 );
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Paragraphs 3.10 and 3.13 explain how chooses the orientation of closed
curves.

3.4. Meshing a three-dimensional loop

We may apply the same progressive algorithm for meshing the circle in R
3

introduced in paragraph 2.11 :

Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xyz[0], y = xyz[1], z = xyz[2];



Manifold circle_manif = RR3.implicit ( x*x + y*y == 1., x*y == 4.*z );

Mesh circle
( tag::progressive, tag::desired_length, 0.1, tag::random_orientation );

Unlike for the circle in paragraph 3.2, there is no way to choose between the two
possible orientations of this circle. No one is more “correct” than the other. This is
why requires a supplementary argument tag::random orientation for the Mesh

constructor. This supplementary argument can be used even when it is not mandatory
(like in the case of closed curves in R

2), thus sparing the computer from the burden of
finding the right orientation. Paragraphs 3.10 and 3.13 give more details.

On the other hand, if the orientation matters for you, you can either attach an
orientation to the manifold circle manif (this feature is not implemented yet) or provide
a starting point and an initial direction as shown in paragraph 3.12.

3.5. Starting and stopping points

In paragraphs 3.2 andd 3.4 we have meshed the entire closed curve circle. If we
only want a piece of a curve, we must specify two points, one for starting and the other
one for stopping.

Looking at the example in paragraph 2.13, let us define a spiral with a slightly
different look and switch to progressive mesh generation.
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Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];
Function r = power ( x*x + y*y, 0.25 );
const double pi = 3.14159;

RR2.implicit ( x*sin(r) == y*cos(r) );
// we don’t need to give a name to the implicit manifold
// the Manifold constructor sets the manifold it builds as working manifold
// after that, many methods use this working manifold by default



Cell A ( tag::vertex ); x(A) = pi*pi; y(A) = 0.;

Cell B ( tag::vertex ); x(B) = 81*pi*pi; y(B) = 0.;

Mesh spiral ( tag::progressive, tag::start_at, A,

tag::stop_at, B, tag::desired_length, 1. );

Unlike in paragraph 2.13, we define the spiral through an implicit equation. Had
we chosen the (natural) definition r = power ( x*x + y*y, 0.5 ), the very same spiral as
in paragraph 2.13 would have been obtained. For aesthetic reasons, we have chosen a
different definition of r, thus obtaining a different spacing between the arcs of the spiral.

Another noteworthy difference from paragraph 2.13 is that vertices are distributed
along the spiral uniformly (with respect to the distance in the surrounding space R

2).
The segments are too small to be seen in the figure.

Note that there are two ways to go along the spiral starting from A. One of them
will eventually stumble upon the stopping point B while the other one will never meet
B. has no means to guess which way it should start building the mesh, so it
performs a preliminary search in both directions. The one that first meets B wins and the
mesh is subsequently built along the winning direction.

Thus, if we want to mesh an arc of a circle, we can use a sequence of statements like

RR2.implicit ( (x-x0)*(x-x0) + (y-y0)*(y-y0) == radius * radius );

Cell A ( tag::vertex ); // set x(A) and y(A)

Cell B ( tag::vertex ); // set x(B) and y(B)

Mesh arc_of_circle ( tag::progressive, tag::start_at, A,

tag::stop_at, B, tag::desired_length, some_value );

However, if we choose A and B diametrally opposed, will mesh unpredictably
one half of the circle or the other.

Paragraph 3.12 shows how we can specify the direction we want to follow starting
from a given point, thus avoiding ambiguities and also saving computational time.

Of course we must be careful to choose starting and stopping points belonging to the
manifold (or to project them explicitly – for this we should have given a name to the
implicit manifold) otherwise the meshing algorithm will either fail to start or will spin for
ever on the circle or spiral, hopelessly searching for B.

3.6. Meshing a compact surface

Recall that in this manual we use the term “manifold” to mean a manifold without
boundary. So, the term “compact surface” should be understood as “compact surface
without boundary” like the sphere or the torus.

Just like for the circle in paragraphs 3.2 and 3.4, if we want to mesh a compact
surface entirely the mesh will have no boundary so we only need to provide the desired
(average) length of segments. Code below builds a mesh on the sphere.

Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );

Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );

Function x = xyz[0], y = xyz[1], z = xyz[2];

Manifold sphere_manif = RR3.implicit ( x*x + y*y + z*z == 1. );

Mesh sphere ( tag::progressive, tag::desired_length, 0.1 );



Again, a significant computational effort is made for finding a starting point for the
meshing process. We can alleviate this burden simply by providing a starting point on
the sphere :

Cell A ( tag::vertex ); x(A) = 1.; y(A) = 0.; z(A) = 0.;
Mesh sphere ( tag::progressive, tag::start_at, A, tag::desired_length, 0.1 );

Also, some computational effort is made for choosing the right orientation of the
sphere; paragraphs 3.10 and 3.13 give more details.

3.7. A more complicated surface

Here is an example of a compact surface given by a more complicated implicit
equation. It can be vaguely described as a convolution between two tori.

Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xyz[0], y = xyz[1], z = xyz[2];

Function f1 = x*x + y*y + 0.1; // we add 0.1 to avoid singularities
Function f2 = 1. - power ( f1, -0.5 );
Function d1 = z*z + f1 * f2 * f2; // squared distance to a circle in the xy plane
Function f3 = (x-0.4)*(x-0.4) + z*z + 0.1; // we add 0.1 to avoid singularities
Function f4 = 1. - power ( f3, -0.5 );
Function d2 = y*y + f3 * f4 *f4; // squared distance to a circle in the xz plane
Manifold tori_manif = RR3.implicit

( smooth_min ( d1, d2, tag::threshold, 0.2 ) == 0.15 );

Mesh tori ( tag::progressive, tag::desired_length, 0.09 );

Function smooth min gives a smooth approximation of the minimum between two or
more Function objects. It is equal to the true minimum if the difference between the two
values is higher, in absolute value, than the provided threshold. When the difference is
smaller than the threshold, it gives a C1 interpolation between the two values.



If we want sharp edges, we must build the edges first as explained in paragraph 3.18.
Comments at the end of paragraph 3.6 apply here, too : must find a

starting point and the right orientation.
This is a good place to mention that the progressive meshing algorithm has a bug

which shows up very rarely, possibly related to the function smooth min. We are doing
our best to track the bug.

3.9. A bumpy hemisphere

We now look again at the surface in paragraph 2.12 and build it progressively, using
fewer lines of code.

Manifold nut = RR3.implicit ( x*x + y*y + z*z + 1.5*x*y*z == 1. );
Manifold base = nut.implicit ( x*x + 3.*z == 0. );
Mesh circle // ’base’ is used by default as working manifold

( tag::progressive, tag::desired_length, 0.1, tag::random_orientation );

nut.set_as_working_manifold();
Mesh bumpy // ’nut’ is used as working manifold

( tag::progressive, tag::boundary, circle, tag::desired_length, 0.1 );

In this example, the issue of the orientation can be really tricky. An orientation of
the circle is chosen at random. Also, will randomly choose to mesh the upper
or the lower hemisphere. Paragraphs 3.10, 3.13 and 3.14 give more details.

3.10. How the orientation is chosen

In , cells and meshes are oriented (paragraphs 1.2 and 8.7 provide details).
For building a mesh progressively, needs to know which orientation we want.

Manifolds may be oriented or not. Euclidian manifolds (that is, the space R
n) have

an intrinsic orientation, given by the natural order of the n coordinates. Parametric man-
ifolds inherit the intrinsic orientation from the space of parameters. Implicit manifolds,
however, have no intrinsic orientation. We can specify an orientation of a manifold by
attaching an outer form to it (this feature is not implemented yet); otherwise, it will be
considered not oriented.

In the example in paragraph 3.1, the boundary circle is oriented according to the
four segments composing it, NW, WS, SE and EN. uses the intrinsic orientation
of the surrounding space RR2 in order to determine the desired orientation of the mesh
disk. The orientation of the boundary circle is important; together with the intrinsic
orientation of the surrounding space, it determines on which side of the circle the mesh
will be propagated. Had we built the segments NW, WS, SE and EN in the opposite direction
(that is, WN, SW, ES and NE) the program would have tried to mesh the exterior of the disk,
never stopping.

Compact manifolds of co-dimension one (closed curves in R
2, compact surfaces in

R
3) are an exception among implicit manifolds. There is a “privileged” orientation of

such a manifold, which is compatible with the intrinsic orientation of the surrounding
space. We call this orientation inherent; paragraph 3.13 discusses this topic.

Open curves (like the spiral in paragraps 3.5 and 3.12) have no privileged orienta-
tion. If we don’t specify an orientation, these manifolds are considered not oriented. If



we don’t specify a starting direction, will perform a preliminary search in both
directions and choose the one that first meets the stopping point.

Closed curves in R
3 like the circle in paragraphs 3.4 and 3.9 have no privileged

orientation either. There is no way to decide which of its two possible orientations should
be chosen; no one is more “correct” than the other. This is why will reject
a tentative to define circle without tag::random orientation as last argument to the
Mesh constructor. A statement like Mesh circle ( tag::progressive, tag::desired length,

some value ) will produce a run-time error if the current working manifold has dimension
1 and the geometric dimension (that is, the number of coordinates) is 3.

The options given to the constructor of Mesh bumpy in paragraph 3.9 are discussed in
paragraph 3.14.

3.12. Specifying the direction

For one-dimensional manifolds, we can specify, along with the starting point, a
starting direction, thus saving some computational time. The code producing the spiral
in paragraph 3.5 can be changed as below.

Cell A ( tag::vertex ); x(A) = pi*pi; y(A) = 0.;
Cell B ( tag::vertex ); x(B) = 81*pi*pi; y(B) = 0.;
std::vector < double > direc = { 0., 1. };
Mesh spiral ( tag::progressive, tag::start_at, A, tag::towards, direc,

tag::stop_at, B, tag::desired_length, 1. );

Note that the vector direc is associated to the point A.
Recall that open curves have no “default” (or “inherent”) orientation. uses

the vector direc as an indication about where to go.
It is the user’s responsibility to ensure that, going in the specified direction, the

algorithm will eventually meet the stopping point B. Otherwise, we may end up spinning
endlessly along the spiral.

We could specify in a similar fashion the orientation of circle in paragraph 3.2, thus
saving some computational time :

Cell A ( tag::vertex ); x(A) = 1.; y(A) = 0.;
Mesh circle ( tag::progressive, tag::start_at, A,

tag::towards, { 0., 1. }, tag::desired_length, 0.2 );

If, in the above, we choose the opposite direction, will later try to mesh the
exterior of the disk.

The same technique can be used for building the circle in paragraph 3.4, thus
avoiding ’s random choice of the orientation :

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Manifold circle_manif = RR3.implicit ( x*x + y*y == 1., x*y == 4.*z );
Mesh circle ( tag::progressive, tag::start_at, S,

tag::towards, { 1., 0., 0. }, tag::desired_length, 0.2 );

This also applies to the example in paragraph 3.9. However, there the topologic
considerations are more complex, so we delegate this discussion to paragraph 3.14.



3.13. The intrinsic and inherent orientations

Euclidian manifolds have an intrinsic orientation given by the natural order of the
coordinates. will always use this orientation when the working manifold is
Euclidian. We can enforce the requirement of using the intrinsic orientation by providing
a tag::intrinsinc orientation as argument to the Mesh constructor. However, this
argument is not necessary; will consider it by default. This happens for the
disk in paragraphs 3.1 and 3.2, for the diamond in paragraph 3.17 and for the annulus in
paragraphs 3.3, 3.22 and 3.24.

Compact manifolds of co-dimension one (closed curves in R
2, compact surfaces

in R
3) have a privileged orientation, compatible with the intrinsic orientation of the

surrounding space; we call this orientation “inherent”. will choose it in
some situations, unless we provide a tag::random orientation as argument to the Mesh

constructor. We can enforce the requirement of finding the inherent orientation by
providing a tag::inherent orientation as argument to the Mesh constructor; however,

will consider this argument by default when we provide no stopping point (for
one-dimensional meshes) or we provide no boundary (for two-dimensional meshes). In
these cases, will assume that the manifold is compact and, if it has co-dimension
one, the inherent orientation will be used. This happens for the circle in paragraph 3.2,
for the sphere in paragraph 3.6 and for the tori in paragraph 3.7.

If we do provide a stopping point, or a boundary, has no means to know in
advance whether the manifold is compact or not, so it will not try to find the inherent
orientation. This happens for the spiral and for the arc of circle in paragraph 3.5,
for the bumpy hemisphere in paragraph 3.9, for the piece of cyl and piece of sph in
paragraphs 3.18 and 3.19 and others. In these situations, we may require specifically
the inherent orientation by providing the tag::inherent orientation as last argument
to the Mesh constructor. Do not misuse this option; if you ask to find the
inherent orientation of an open curve or of a non-compact surface, it will not complain
but will hopelessly try to mesh the entire manifold, never stopping. For instance, in
paragraph 3.5 it makes sense to enforce the inherent orientation for the arc of circle

but not for the spiral. Also, in paragraphs 3.18 and 3.19 it makes sense to enforce the
inherent orientation for the piece of sph but not for the piece of cyl.

Determining the intrinsic orientation of a Euclidian manifold is computationally very
cheap. However, determining the inherent orientation of a manifold of co-dimension one
is not a trivial computational process. is unable to determine this orientation by
looking at the equations defining the manifold; it needs a mesh on the entire manifold.

So, in paragraph 3.2 we obtain a correctly oriented mesh on the disk, with no need
to provide any specific information about the orientation of circle manif. Behind the
curtains, builds a mesh on circle manif with an initially arbitrary orientation,
then checks its consistency within the surrounding manifold and, if necessary, switches
the orientation of the produced mesh. Then, again, the orientation of the boundary
(together with the intrinsic orientation of the surrounding space RR2) defines whether the
interior or the exterior of the disk is to be meshed.

A similar process happens for compact surfaces in R
3 like those considered in

paragraphs 3.6 and 3.7, except that checking the orientation of a compact surface has



a computational cost considerably higher than for a closed curve in R
2.

You can save some computing time if you specify the orientation yourself, either by
providing more information to the Mesh constructor as shown in paragraph 3.15 or by
attaching this information to the manifold itself (this feature is not implemented yet).

If the orientation is not important for you, you can add to the Mesh constructor the
last argument tag::random orientation and will not waste computing time to
find the inherent orientation.

3.14. Revisiting the bumpy hemisphere

Let us have a closer look at the code in paragraph 3.9. The manifold nut has a
unique orientation consistent with the surrounding space, just like those in paragraphs
3.6 and 3.7, but the base within it has not. This is why, when we build the circle, we
must provide a tag::random orientation as a last argument to the Mesh constructor, or
specify the orientation by providing a starting point and a starting direction as described
in paragraph 3.12.

When we build bumpy, since we are providing a boundary, does not treat
the current working manifold nut as compact, that is, it does not try to determine an
inherent orientation. It will start the meshing process on an arbitrary side of circle,
thus meshing unpredictably the upper or the lower bumpy hemisphere.

If we enforce the orientation by providing a tag::inherent orientation as a last
argument to the Mesh constructor of bumpy, then will mesh (behind the curtains)
both halves of the sphere; let’s call them msh1 and msh2. Note that the circle has already
been built, so its orientation is given. Both msh1 and msh2 have circle as boundary, which
means that they have mutually incompatible orientations. They cannot be joined. But
the reverse of any of them can be joined with the other one, the result being a mesh
on the entire bumpy sphere. Two choices are possible : either msh1.reverse() is joined
with msh2 or msh1 is joined with msh2.reverse(), resulting in two meshes on the same
compact surface with opposite orientations. One of these orientations is compatible with
the intrinsic orientation of the surrounding space R

3 and is called inherent orientation.
If the first one is correctly oriented, msh2 will be returned; if the second one is correctly
oriented, msh1 will be returned.

Thus, in the code below we will still obtain unpredictably either the upper or the
lower hemisphere, but only due to the random choice in the orientation of circle. The
construction of bumpy is determined by the orientation of circle.

Manifold nut = RR3.implicit ( x*x + y*y + z*z + 1.5*x*y*z == 1. );
Manifold base = nut.implicit ( x*x + 3.*z == 0. );
Mesh circle

( tag::progressive, tag::desired_length, 0.1, tag::random_orientation );
nut.set_as_working_manifold();
Mesh bumpy ( tag::progressive, tag::boundary, circle,

tag::desired_length, 0.1, tag::inherent_orientation );

In the code below we will obtain the upper hemisphere.

Cell S ( tag::vertex );
x(S) = 0.; y(S) = -1.; z(S) = 0.;



Mesh circle ( tag::progressive, tag::start_at, S, tag::towards, { 1., 0., 0. },
tag::desired_length, 0.1 );

nut.set_as_working_manifold();
Mesh bumpy ( tag::progressive, tag::boundary, circle,

tag::desired_length, 0.1, tag::inherent_orientation );

Code below will produce the lower hemisphere.

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Mesh circle ( tag::progressive, tag::start_at, S, tag::towards, { -1., 0., 0. },

tag::desired_length, 0.1 );
nut.set_as_working_manifold();
Mesh bumpy ( tag::progressive, tag::boundary, circle,

tag::desired_length, 0.1, tag::inherent_orientation );

Code below will unpredictably mesh the upper or the lower hemisphere; in either
case, the produced mesh will be oriented upwards because the orientation of circle

points upwards.

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Mesh circle ( tag::progressive, tag::start_at, S, tag::towards, { 1., 0., 0. },

tag::desired_length, 0.1 );
nut.set_as_working_manifold();
Mesh bumpy ( tag::progressive, tag::boundary, circle, tag::desired_length, 0.1 );

Code below will unpredictably mesh the upper or the lower hemisphere; in either
case, the produced mesh will be oriented downwards.

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
Mesh circle ( tag::progressive, tag::start_at, S, tag::towards, { -1., 0., 0. },

tag::desired_length, 0.1 );
nut.set_as_working_manifold();
Mesh bumpy ( tag::progressive, tag::boundary, circle, tag::desired_length, 0.1 );

3.15. Specifying the direction

In paragraph 3.12 we have seen how we can specify the direction of propagation
of the mesh for one-dimensional manifolds. A similar approach can be taken for two-
dimensional meshes. For instance, code below will mesh the upper half of the “bumpy
sphere” already considered in paragraphs 2.12, 3.9 and 3.14, oriented upwards.

Cell S ( tag::vertex ); x(S) = 0.; y(S) = -1.; z(S) = 0.;
std::vector < double > tau { 1., 0., 0. };
Mesh circle ( tag::progressive, tag::start_at, S, tag::towards, tau,

tag::desired_length, 0.1 );
nut.set_as_working_manifold();
std::vector < double > N { 0., 0., 1. };
Mesh bumpy ( tag::progressive, tag::boundary, circle,

tag::start_at, S, tag::towards, N,
tag::desired_length, 0.1 );

If we define N as {0.,0.,-1.}, we will obtain the lower half of the “sphere”, still
oriented upwards.

If we define tau as { -1., 0., 0.}, we will get a mesh oriented downwards.



3.16. Geometric limitations

Progressive meshing has its limits. cannot mesh a manifold whose curvature
is too high when compared to the length of the segments. The example in paragraph
3.7 is “on the edge”, that is, if we increase the segment size the meshing process will
probably get stuck somewhere.

Also, we should avoid domains whose boundary has components too close to each
other, when compared to the segment size. In this respect, the example in paragraph 3.3
is also “on the edge”. In contrast, is “at ease” when meshing the same domain
with other options, like in paragraphs 3.22, 3.23 or 3.24.

Sharp edges and singularities must be dealt with as described in subsequent para-
graphs.

The example in paragraph 3.1 is also “on the edge” for a different reason. While
tries to build a mesh with segments of constant given length, the length of

the segments on the boundary of the disk varies (paragraphs 2.3 and 2.4 explain why).
This contradiction puts the algorithm in a difficult position. If the variation were larger
(or sharper) the algorithm might stop with some error message. In contrast,
is “at ease” when meshing the disk in paragraph 3.2 because there the segments on the
boundary have (approximately) constant length.

This is a good place to mention that the progressive meshing algorithm has a bug
which shows up very rarely. It has been observed in examples similar to the one in
paragraph 3.7, which means it could be related not to the meshing algorithm itself but
to the function smooth min. We are doing our best to track the bug. Fingers crossed.

3.17. Sharp angles

can deal with non-smooth domains. The user must define separately
smooth pieces of the boundary and then join them.

Here is how to mesh the diamond-shaped domain in paragraph 2.9.

// we define the arcs NW, WS, SE and EN either as segments, like in
RR2.implicit ( x*y + x - y == -1. );
Mesh NW ( tag::segment, N.reverse(), W, tag::divided_in, 12 );

// or with tag::progressive like in
RR2.implicit ( x*y - x - y == 1. );
Mesh WS ( tag::progressive, tag::start_at, W, tag::stop_at, S,

tag::desired_length, 0.1 );
// ... //

Mesh bdry ( tag::join, NW, WS, SE, EN );
RR2.set_as_working_manifold();
Mesh diamond ( tag::progressive, tag::boundary, bdry, tag::desired_length, 0.1 );

3.18. Sharp edges

We can mesh surfaces with sharp edges, by building individually smooth pieces
of surface and then joining them. The edges must be built first; thus, some previous
knowledge about the geometry of the surface is needed.



Manifold RR3 ( tag::Euclid, tag::of_dim, 3 );
Function xyz = RR3.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xyz[0], y = xyz[1], z = xyz[2];

const double rs = 1.; // radius of the sphere
const double rc = 0.45; // radius of the cylinder
const double seg_size = 0.1;

Manifold cylinder = RR3.implicit ( y*y + (z-0.5)*(z-0.5) == rc*rc );

cylinder.implicit ( x == 1.5 ); // we cut the cylinder on its right side
Cell start_1 ( tag::vertex );
x ( start_1 ) = 1.5; y ( start_1 ) = 0.; z ( start_1 ) = 0.5 + rc;
Mesh circle_1 ( tag::progressive, tag::start_at, start_1,

tag::towards, { 0., 1., 0. }, tag::desired_length, seg_size );

// we cut the cylinder on its left side with a sphere
Manifold intersection = cylinder.implicit ( x*x + y*y + z*z == rs*rs );
Cell start_2 ( tag::vertex );
x ( start_2 ) = 1.; y ( start_2 ) = 0.; z ( start_2 ) = 0.5 - rc;
intersection.project ( start_2 );
Mesh circle_2 ( tag::progressive, tag::start_at, start_2,

tag::towards, { 0., -1., 0. }, tag::desired_length, seg_size );

Mesh two_circles ( tag::join, circle_1, circle_2.reverse() );
cylinder.set_as_working_manifold();
Mesh piece_of_cyl ( tag::progressive, tag::boundary, two_circles,

tag::start_at, start_1, tag::towards, { -1., 0., 0. },
tag::desired_length, seg_size );

RR3.implicit ( x*x + y*y + z*z == rs*rs );
Mesh piece_of_sph ( tag::progressive, tag::boundary, circle_2,

tag::start_at, start_2, tag::towards, { 0., 0., -1. },
tag::desired_length, seg_ size );

Mesh sphere_and_cylinder ( tag::join, piece_of_sph, piece_of_cyl );



Note how the orientation is important. For meshing the piece of cylinder, we provide
its future boundary which is the union of circle 1 with circle 2.reverse(). For meshing
the sphere, we provide circle 2. The common boundary has a certain orientation when
seen from the cylinder and has the opposite orientation when seen from the sphere. If we
do not respect these orientations, will be unable to join the two meshes.

If we want to close the extremity of the cylinder, is suffices to add a few lines of
code :

RR3.implicit ( x == 1.5 );
Mesh disk ( tag::progressive, tag::boundary, circle_1.reverse(),

tag::start_at, start_1, tag::towards, { 0., 0., -1. },
tag::desired_length, seg_size );

Mesh sphere_and_cylinder ( tag::join, piece_of_sph, piece_of_cyl, disk );

We have chosen the diameter of the cylinder slightly smaller than 1. Had we chosen
a diameter equal to 1, the cylinder would be tangent to the sphere at point (0, 0, 1). At
that point, the two equations defining the intersection manifold would be degenerate
(the Jacobian matrix would not have full rank). This is a situation which cannot
handle yet; it is discussed in paragraph 3.21.

3.19. Sharp edges, again

With a few changes to the code in paragraph 3.18, we can cut two holes in the sphere
and create a tunnel using the cylinder’s wall.

Manifold cylinder = RR3.implicit ( y*y + (z-0.5)*(z-0.5) == rc*rc );
Manifold intersection = cylinder.implicit ( x*x + y*y + z*z == rs*rs );
Cell start_1 ( tag::vertex );
x ( start_1 ) = 1.; y ( start_1 ) = 0.; z ( start_1 ) = 0.5 - rc;
intersection.project ( start_1 );



Mesh circle_1 ( tag::progressive, tag::start_at, start_1,
tag::towards, { 0., 1., 0. }, tag::desired_length, seg_size );

Cell start_2 ( tag::vertex );
x ( start_2 ) = -1.; y ( start_2 ) = 0.; z ( start_2 ) = 0.5 - rc;
intersection.project ( start_2 );
Mesh circle_2 ( tag::progressive, tag::start_at, start_2,

tag::towards, { 0., 1., 0. }, tag::desired_length, seg_size );
Mesh two_circles ( tag::join, circle_1.reverse(), circle_2 );
cylinder.set_as_working_manifold();
Mesh piece_of_cyl ( tag::progressive, tag::boundary, two_circles,

tag::start:at, start_1, tag::towards, { -1., 0., 0. },
tag::desired_length, seg_size );

Mesh two_circles_rev ( tag::join, circle_1, circle_2.reverse() );
RR3.implicit ( x*x + y*y + z*z == rs*rs );
Mesh piece_of_sph ( tag::progressive, tag::boundary, two_circles_rev,

tag::start:at, start_1, tag::towards, { 0., 0., -1. },
tag::desired_length, seg_size );

Mesh perf_sphere ( tag::join, piece_os_sph, piece_of_cyl );

deals well with a disconnected manifold like intersection. Each of the
constructors Mesh circle 1 and Mesh circle 2 meshes only a connected component of
intersection, depending on the starting point we provide.

Had we chosen a cylinder of diameter 1, a singular point would have appeared; the
two “circles” would touch at point (0, 0, 1). This is a situation which cannot
handle yet; it is discussed in paragraph 3.21.

3.20. Singularities

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

If we want to mesh (a part of) a surface with singular points, we must give to
knowledge about these singularities. A typical example is the vertex of a cone.

Manifold cone_manif = RR3.implicit ( x*x + y*x == z*z );
cone_manif.implicit ( z == 1. );
Cell A ( tag::vertex ); x(A) = 1.; y(A) = 0.; z(A) = 1.;



Mesh circle ( tag::progressive, tag::start_at, A,

tag::towards, { 0., -1., 0. ),

tag::desired_length, 0.1 );

cone_manif.set_as_working_manifold();

Cell V ( tag::vertex ); x(V) = 0.; y(V) = 0.; z(V) = 0.;

Mesh cone ( tag::progressive, tag::boundary, circle,

tag::start_at, A, tag::towards, { -1., 0., -1. },

tag::singular, V, tag::desired_length, 0.1 );

3.21. Singularities, again

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

Besides vertices like the one described in paragraph 3.20, another kind of singularity
appears when we intersect two manifolds which have a tangency point. This happens if
we choose rc = 0.5 in paragraph 3.18 or 3.19.

We focus on the piece of cylinder from paragraph 3.19 (which is to be subsequently
joined with a sphere with two holes).

Manifold cylinder = RR3.implicit ( y*y + (z-0.5)*(z-0.5) == 0.25 );

Manifold infinity = cylinder.implicit ( x*x + y*y + z*z == 1. );

Cell V ( tag::vertex ); x(V) = 0.; y(V) = 0.; z(V) = 1.;

Mesh circle_1 ( tag::progressive,

tag:: start_at, V, tag::towards, { 1., 1., 0. },

tag::singular, V, tag::desired_length, 0.1 );

Mesh circle_2 ( tag::progressive,

tag:: start_at, V, tag::towards, { -1., -1., 0. },

tag::singular, V, tag::desired_length, 0.1 );

cylinder.set_as_working_manifold();

Cell W = circle_1.cell_in_front_of(V).tip();

Mesh piece_of_cyl ( tag::progressive, tag::boundary, circle_1, circle_2,

tag::start_at, W, tag::towards, { -1., 1., 0. },

tag::singular, V, tag::desired_length, 0.1 );



accepts as Manifold a self-intersecting set like infinity. However, in the
Mesh constructor we must specify V as singular point.

Unlike in paragraph 3.19, here we cannot join the two meshes circle 1 and circle 2.
is unable to join two closed polygonal lines having a vertex in common; in other

words, it does not handle self-intersecting Meshes. This is why we provide the two pieces
of boundary separately.

3.22. Non-uniform meshing

The desired length may be a non-constant function.

Function d = 0.03 + 0.04 * ( (x+0.3)*(x+0.3) + (y-0.9)*(y-0.9) );
Manifold circle = RR2.implicit ( x*x + y*y == 1. );
Mesh outer ( tag::progressive, tag::desired_length, d );
Manifold ellipse = RR2.implicit ( x*x + (y-0.37)*(y-0.37) + 0.3*x*y == 0.25 );
Mesh inner ( tag::progressive, tag::desired_length, d );
Mesh bdry ( tag::join, outer, inner.reverse() );
RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, bdry, tag::desired_length, d );
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Compare with the mesh in paragraph 3.3.
It is the user’s responsibility to provide a desired length which takes positive values

at all points of the future mesh. Also, desired length should be a reasonably smooth
function; sharp variations should be avoided.



3.23. Changing the Riemann metric

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

We can attach a non-uniform metric to our manifold; as a consequence, for a
constant desired length, the apparent segment length will vary from zone to zone. For
instance, in the code below we set a metric which increases the measured length of
the segments close to the narrow part of the domain. As a consequence, the meshing
algorithm, while trying to build a mesh of constant desired length, will choose shorter
segments in the proximity of the narrow zone (because the length measured by the
Riemann metric will be larger than the length we see in the drawing), thus producing
the same result as in paragraph 3.22.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];
Function d = 0.3 + 0.5 * ( (x+0.3)*(x+0.3) + (y-0.9)*(y-0.9) );
RR2.set_metric ( 1. / d );

Manifold circle = RR2.implicit ( x*x + y*y == 1. );
Mesh outer ( tag::progressive, tag::desired_length, 0.1 );
Manifold ellipse = RR2.implicit ( x*x + (y-0.37)*(y-0.37) + 0.3*x*y == 0.25 );
Mesh inner ( tag::progressive, tag::desired_length, 0.1 );
Mesh bdry ( tag::join, outer, inner.reverse() );
RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, bdry, tag::desired_length, 0.1 );

These two approaches (the one described in paragraph 3.22 and the one described
here) can be used interchangeably. It is possible to use both in the same code, but the
code will become rather obscure.

3.24. Anisotropic metric

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

The technique described in paragraph 3.23 can be generalized to an anisotropic
Riemann metric. We define the metric by means of a square matrix M . M must be
symmetric positive definite. The arguments of set metric are m11, m12 and m22 for two
dimensions, m11, m12, m13, m22, m23 and m33 for three dimensions.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];
Function d = 0.3 + (x+0.3)*(x+0.3) + (y-0.9)*(y-0.9);
RR2.set_metric ( 1. + 1./d, -3./d, 1. + 9./d );
// or, equivalently :
// RR2.set_metric ( tag::principal_part, 1.,
// tag::deviatoric_part, 1./d, -3./d, 9./d );

Manifold circle = RR2.implicit ( x*x + y*y == 1. );
Mesh outer ( tag::progressive, tag::desired_length, 0.1 );



Manifold ellipse = RR2.implicit ( x*x + (y-0.37)*(y-0.37) + 0.3*x*y == 0.25 );
Mesh inner ( tag::progressive, tag::desired_length, 0.1 );
Mesh bdry ( tag::join, outer, inner.reverse() );
RR2.set_as_working_manifold();
Mesh disk ( tag::progressive, tag::boundary, bdry, tag::desired_length, 0.1 );
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Compare with the mesh in paragraph 3.3.
This result cannot be achieved using the approach of paragraph 3.22 (by setting a

non-constant desired length).

3.25. Future work

It would be nice to define domains using inequalities between Functions.



4. Meshing of three-dimensional domains

Work in progress.



5. Quotient manifolds

The code described in this section does not work yet. It should be

regarded as a mere declaration of intentions.

The roots of go back to a PhD thesis in 2002 where finite elements on a
torus were implemented in FORTRAN.* The torus is meant as a mere quotient manifold
between R

2 and a group of translations of R
2 with two generators; you may think of

it as R
2/Z2. It should be stressed that this manifold is not the usual “donut” built in

paragraph 2.15. The quotient torus is a Riemann manifold with no curvature; it is locally
Euclidian (that is, locally isometric to open sets of R2); we may call it “flat torus”. It
cannot be embedded in R

3, much less be represented graphically. An unfolded mesh in
R

2 can be represented graphically, where vertices and segments from the torus are drawn
more than once.

One of the goals of is to deal with meshes on quotient manifolds. Different
quotient operations can be used, with groups of translations of R2 but also with other
groups of transformations.

5.1. A one-dimensional circle

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

Here is the closed curve R/Z. We define it as a segment from A to A, with a specified
jump.

// begin with the one-dimensional line
Manifold RR ( tag::Euclid, tag::of_dim, 1 );
Function x = RR.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );

// define an action on RR2 (a translation)
Manifold::Action g; g(x) = x+1;
Manifold circle = RR.quotient ( g );

// one vertex is enough to start the process
Cell A ( tag::vertex ); x(A) = 0.02;
// with this vertex, we build a segment
Mesh seg ( tag::segment, A.reverse(), A, tag::divided_in, 10, tag::jump, g );

We do not bother with the graphical representation of this one-dimensional mesh.

5.2. A flat torus

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

Here is the classical example of R2/Z2.

// begin with the usual two-dimensional space
Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );

* See C. Barbarosie, Shape optimization of periodic structures, Computers & Structures 30, 2003



Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

// define two actions on RR2 (translations)
Manifold::Action g1, g2;
g1(x,y) = (x+1) && y;
g2(x,y) = x && (y+1);
Manifold torus_manif = RR2.quotient ( g1, g2 );

// one vertex is enough to start the process
Cell A ( tag::vertex ); x(A) = 0.02; y(A) = 0.02;
// with this vertex, we build two segments
Mesh seg_horiz ( tag::segment, A.reverse(), A,

tag::divided_in, 10, tag::jump, g1 );
Mesh seg_vert ( tag::segment, A.reverse(), A,

tag::divided_in, 10, tag::jump, g2 );
// and a rectangle
Mesh torus ( tag::rectangle, seg_horiz, seg_vert,

seg_horiz.reverse(), seg_vert.reverse() );

// it would be meaningless to export ’square’ as a msh file
// we can however export an unfolded mesh :
torus.unfold(-0.5,-0.2,0.5,0.2).export_msh ("unfolded-torus.msh");

We have added a shadow representing the periodicity cell [0, 1]2. This gives a hint
about the segments being repeated by the unfolding.

5.3. A skew flat torus

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

We can build a skew torus by simply choosing other actions on RR2.

Manifold::Action g1, g2;
g1(x,y) = (x+1) && (y+0.1);
g2(x,y) = (x+0.1) && (y+1);
Manifold torus_manif = RR2.quotient ( g1, g2 );

Again, we have added a shadow representing the periodicity cell, this time a
parallelogram.

5.4. A curved circle

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

We are now in a position to resume the example in paragraph 2.14, this time in a
less cumbersome manner.

Manifold RR ( tag::Euclid, tag::of_dim, 1 );
Function theta = RR.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
const double pi = 3.1415926536;
Manifold::Action g; g(theta) = theta + 2*pi;
Manifold circle = RR.quotient ( g );

Cell A ( tag::vertex ); theta(A) = 0.;



Mesh seg ( tag::segment, A.reverse(), A, tag::divided_in, 10, tag::jump, g );

// define new coordinates x and y as arithmetic expressions of theta
Function x = cos(theta), y = sin(theta);
// forget about theta; in future statements, x and y will be used
circle.set_coordinates ( x && y );
seg.export_msh ("circle.msh");

5.5. A cylinder

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

Here is how to build a cylinder in R
3 :

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function theta_z =

RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function theta = theta_z[0], z = theta_z[1];
const double pi = 3.1415926536;
Manifold::Action g; g( theta, z ) = (theta+2*pi) && z;
Manifold cylinder_manif = RR2.quotient ( g );

Cell A ( tag::vertex ); theta(A) = 0.; z(A) = -1.;
Cell B ( tag::vertex ); theta(B) = 0.; z(B) = 1.;
Mesh AA ( tag::segment, A.reverse(), A, tag::divided_in, 10, tag::jump, g );
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 10 ); // no jump
Mesh BB ( tag::segment, B.reverse(), B, tag::divided_in, 10, tag::jump, -g );
Mesh cylinder ( tag::rectangle, AA, AB, BB, AB.reverse() );

// define new coordinates x and y as arithmetic expressions of theta
Function x = cos(theta), y = sin(theta);
// forget about theta; in future statements, x, y and z will be used
cylinder_manif.set_coordinates ( x && y & z );
cylinder.export_msh ("circle.msh");

5.6. A curved torus

The code described in this paragraph does not work yet. It should be

regarded as a mere declaration of intentions.

We are now in a position to resume the example in paragraph 2.15, this time by
using the quotient manifold R

2/Z2 introduced in paragraph 5.2.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function ab = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function alpha = ab[0], beta = ab[1];
const double pi = 3.1415926536;
Manifold::Action g1, g2;
g1(alpha,beta) = (alpha+2.*pi) && beta;
g2(alpha,beta) = alpha && (beta+2.*pi);
Manifold torus_manif = RR2.quotient ( g1, g2 );

Cell A ( tag::vertex ); alpha(A) = 0.; beta(A) = 0.;
Mesh seg_horiz ( tag::segment, A.reverse(), A,



tag::divided_in, 10, tag::jump, g1 );
Mesh seg_vert ( tag::segment, A.reverse(), A,

tag::divided_in, 10, tag::jump, g2 );
Mesh torus ( tag::rectangle, seg_horiz, seg_vert,

seg_horiz.reverse(), seg_vert.reverse() );

// parametrize the donut
const double big_radius = 3., small_radius = 1.;
// define x, y and z as functions of alpha and beta
Function x = ( big_radius + small_radius*cos(beta) ) * cos(alpha),

y = ( big_radius + small_radius*cos(beta) ) * sin(alpha),
z = small_radius*sin(beta);

// forget about alpha and beta :
torus.set_coordinates ( x && y && z );
// in future statements (e.g. for graphical representation)
// x, y and z will be used, not alpha nor beta :
torus.export_msh ("torus.msh");



6. Fields, functions and variational formulations

6.1. Fields and functions

As the reader may have already noticed, all examples in begin by declaring
a Euclidian Manifold and then go on by building a coordinate system :

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

See paragraph 9.2 for more details about tags.
In the above, xy is a Function, a vector field actually, with two components, x and

y. The declaration of xy starts a complex process; under the curtains declares
a Field object associated to xy. The Field object changes the behaviour of in
what regards initialization of Cells. Since xy is of type Lagrange of degree 1, each newly
built vertex Cell will have memory space reserved for two double precision numbers. If A
is a vertex Cell, an assignment like x(A) = 1.5 sets the value of the x component of the
Field associated to xy at A.

If we declare xy to be of type Lagrange of degree 2, not only future vertices will have
space reserved for two doubles, but also future segments. So, we may assign the value of
y at the middle of segment AB by using the syntax y(AB) = 0.75.

Function objects allow for arithmetic expressions like in

Function norm = power ( x*x + y*y, 0.5 );

The deriv method performs symbolic differentiation :

Function norm_x = norm.deriv ( x );
Function norm_y = norm.deriv ( y );

Functions can also be integrated, see section 7.

6.2. Fields and functions [outdated]

The code described in this paragraph is outdated and does not work.

Consider the mesh built by the code below.

Mesh::intended_dimension = 2; // topological dimension
Mesh::initialize();
auto & xy = NumericField::multi_dim ("size", 2, "lives on", "points");
auto & x = xy[0], & y = xy[1];
auto & u = NumericField::one_dim ("lives on", "points");
auto SW = Cell::point ("SW"); x(SW) = -1.1; y(SW) = 0.3;
auto SE = Cell::point ("SE"); x(SE) = 1; y(SE) = 0;
auto NE = Cell::point ("NE"); x(NE) = 1; y(NE) = 1;
auto NW = Cell::point ("NW"); x(NW) = -1; y(NW) = 1;
auto south ( tag::segment, SW.reverse(), SE, tag::divided_in, 4, xy );
auto east ( tag::segment, SE.reverse(), NE, tag::divided_in, 2, xy );
auto north ( tag::segment, NE.reverse(), NW, tag::divided_in, 4, xy );



auto west ( tag::segment, NW.reverse(), SW, tag::divided_in, 2, xy );
auto rect_mesh ( tag::rectangle, south, east, north, west, xy );

Note that, besides the NumericField objects x and y which we have already encoun-
tered in paragraph 1.1, we introduce another NumericField, u, which is meant to hold the
values of the solution of some PDE.

We now declare two functions defined on the mesh, linked to the two fields x and y.
We can declare each function individually, as we did in paragraph 1.1, or we can declare
the pair and then extract each component :

auto & xxyy = FunctionOnMesh::from_field ( xy, "Lagrange degree one" );
auto & xx = xxyy[0], & yy = xxyy[1];

These functions are described as "Lagrange degree one", which means that they vary
linearly along segments and also inside triangles. On quadrilaterals, they are polynomials
of degree one, meaning they have a linear part plus a bi-linear one.

We can also declare an unknown function and a test function, to be used in a future
variational problem :

auto & uu = FunctionOnMesh::unknown ( u, "Lagrange degree one");
auto & w = FunctionOnMesh::test ( uu );

The unknown uu is related to the NumericField previously declared, u, which provides
space to hold, at each vertex of the mesh, a real value. Hopefully, at the end of the day
these will be the values of the solution of our PDE. The test function does not need to
hold any values. The test function is an abstract object whose only use is to express the
variational formulation.

FunctionOnMesh objects obey to usual arithmetic rules. For instance, (xx+yy*w)/uu is
a valid expression in . They can also be differentiated, like in (xx*yy).deriv(xx).
Note that this expression will be evaluated right away, producing the result yy, while
expressions involving an unknown function or a test function will produce a delayed
derivative object, to be evaluated later. Thus, w.deriv(xx) will be evaluated only after
replacing the test function w by some function in a base of a discretized Hilbert space.

FunctionOnMesh objects can also be integrated through their method integrate,
which produces a delayed integral expression. The integral is not evaluated right away,
but only later, with the use of an Integrator object (which could be a Gauss quadrature).

Integral expressions are stored as objects belonging to the class
FunctionOnMesh::combinIntegrals. These objects can be equated by using their
operator==, which returns a VariationalProblem object. Thus, the operator
FunctionOnMesh::combinIntegrals::operator== acts as a factory function for
VariationalProblem objects. For instance, x.integrate(rect mesh) == y.integrate(south)

is a syntactically valid expression which would produce a VariationalProblem but actually
gives a run-time error because the operator== checks that the right hand side of the
variational problem actually contains a function declared as uknown and one declared
as test, and that the left hand side contains a test function but no unknown. Here is a
more meaningful example :

auto & var_pb =
( uu.deriv(xx)*w.deriv(xx) + uu.deriv(yy)*w.deriv(yy) ) .integrate(rect_mesh)



== w.integrate(rect_mesh) + w.integrate(south);

Note how we can mix integrals on different domains; recall that south is a side of
rect mesh.

Dirichlet-type boundary conditions are implemented through the directive prescribe on

followed by one or more equalities.

var_pb.prescribe_on (north); uu == 0.; w == 0.;
var_pb.prescribe_on (east); uu == xx*(1.-yy); w == 0.;
var_pb.prescribe_on (west); uu == 0.; w == 0.;



7. Finite elements and integrators

Finite elments are still incipient in . Paragraph 7.1 discusses the concept of
finite element and paragraph 7.2 gives an example of rudimentary use. There is a lot of
ongoing work on this subject.

7.1. Finite elements

The notion of a finite element is quite complex. The purpose of a FiniteElement

is to build a list of functions, say, ψ, defined on our mesh. The linear span of these
functions will be a discretized Hilbert space. It is the FiniteElement’s job to replace, in
the variational formulation, the unknown function by one ψ, the test function by another
ψ and, by evaluating the integrals, obtain the coefficients of a system of linear equations.
Some external solver will then solve the system, and it is the job of the finite element to
transform back the vector produced by the solver into a function defined on our mesh.

Computing each integral is a somewhat separate process; it’s the job of an Integra-

tor which could be a Gauss quadrature or some other procedure like symbolic integra-
tion. When a Gauss quadrature is used, the separation between a FiniteElement’s job
and the Itegrator’s job is not very sharp because often the Gauss quadrature is per-
fomed not on the physical cell but rather on a master element which is built and handled
by the FiniteElement. The authors of have tried to separate these two concepts
as much as possible, especially because some users may want to use a FiniteElement with
no master element, or an Integrator acting directly on the physical cell.

Thus, there is a base class FiniteElement and a derived class FiniteElement::withMaster
which keeps, as an extra attribute, the map transforming the master element to the cur-
rent physical cell. This map depends of course on the geometry of the cell and thus it
must be computed from scratch each time we begin integrating on a new cell. We say
that the FiniteElement is docked on a new Cell; the method dock on performs this opera-
tion. This method is element-specific, each type of finite element having its own class.

For instance, the class FiniteElement::Lagrange Q1 is a class derived from
FiniteElement::withMaster. It will only dock on quadrilaterals (two-dimensional Cells
with four sides). When docking on a cell, the FiniteElement::Lagrange Q1 object will
build four “shape functions” and a transformation map (a diffeomorphism between a
master element occuppying the square [−1, 1]2 and the current cell). It will also build the
jacobian of this transformation map. The four shape functions can be accessed through
the method basis function, as shown in paragraph 7.2.

7.2. A rudimentary example

Let’s look at an example about the Laplace operator with non-homogeneous Dirich-
let boundary conditions.

It should be stressed that the approach presented in this paragraph is rather
low-level. We are working hard to make understand statements describing
variational formulations given as C++ objects. When this part of the code is done, the
programming style will become much more elegant and compact.



Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );
Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );
Function x = xy[0], y = xy[1];

// build a 10x12 mesh on a square domain
Cell A ( tag::vertex ); x(A) = 0.; y(A) = 0.;
Cell B ( tag::vertex ); x(B) = 1.; y(B) = 0.;
Cell C ( tag::vertex ); x(C) = 1.; y(C) = 1.;
Cell D ( tag::vertex ); x(D) = 0.; y(D) = 1.;
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 10 );
Mesh BC ( tag::segment, B.reverse(), C, tag::divided_in, 12 );
Mesh CD ( tag::segment, C.reverse(), D, tag::divided_in, 10 );
Mesh DA ( tag::segment, D.reverse(), A, tag::divided_in, 12 );
Mesh ABCD ( tag::rectangle, AB, BC, CD, DA );

// declare the type of finite element
FiniteElement fe

( tag::with_master, tag::quadrangle, tag::Lagrange, tag::of_degree, 1 );
Integrator integ = fe.set_integrator ( tag::Gauss, tag::quad_4 );

Vertices are not numbered. In the future, a more elegant solution for automatic
numbering of vertices will be implemented; for now, we build a map numbering (see the
source code in file main-7.2.cpp in the distribution tree), to be used as shown below. The
matrix of the linear system and the vector holding the free coefficients are declared as
objects of the Eigen library.

size_t size_matrix = ABCD.number_of ( tag::vertices );
assert ( size_matrix == numbering.size() );
Eigen::SparseMatrix <double> matrix_A ( size_matrix, size_matrix );
Eigen::VectorXd vector_b ( size_matrix ); vector_b.setZero();

We now run over all rectangular cells of ABCD, dock the finite element, compute

integrals of the form

∫∫
∂ψi

∂xα

∂ψj

∂xβ
dx and add the obtained values to the global matrix:

// run over all square cells composing ABCD
CellIterator it = ABCD.iter_over ( tag::cells_of_dim, 2 );
for ( it.reset(); it.in_range(); it++ )
{ Cell small_square = *it;

fe.dock_on ( small_square );
// run twice over the four vertices of ’small_square’
CellIterator it1 = small_square.boundary().iter_over ( tag::vertices );
CellIterator it2 = small_square.boundary().iter_over ( tag::vertices );
for ( it1.reset(); it1.in_range(); it1++ )
for ( it2.reset(); it2.in_range(); it2++ )
{ Cell V = *it1, W = *it2;

// V may be the same as W, no problem about that
Function psiV = fe.basis_function(V),

psiW = fe.basis_function(W),
d_psiV_dx = psiV.deriv(x),
d_psiV_dy = psiV.deriv(y),
d_psiW_dx = psiW.deriv(x),
d_psiW_dy = psiW.deriv(y);



// ’fe’ is already docked on ’small_square’
// so this will be the domain of integration

matrix_A.coeffRef ( numbering[V.core]-1, numbering[W.core]-1 ) +=
fe.integrate ( d_psiV_dx * d_psiW_dx + d_psiV_dy * d_psiW_dy ); } }

In the above, coeffRef is the method used by Eigen to access elements of a sparse
matrix.

We impose Dirichlet boundary conditions u(x, y) = xy (this way, we know before-
hand the exact solution will be u(x, y) = xy). We use a function impose value of unknown

which changes the matrix A and the vector b in order to impose the Dirichlet condition
u(i) = some value. See the source code in file main-7.2.cpp in the distribution tree for the
definition of the impose value of unknown function.

CellIterator it = BC.iter_over ( tag::vertices );

for ( it.reset(); it.in_range(); it++ )
{ Cell P = *it;

size_t i = numbering[P.core]-1;

impose_value_of_unknown ( matrix_A, vector_b, i, y(P) ); }

We then use Eigen to solve the system of linear equations :

Eigen::ConjugateGradient < Eigen::SparseMatrix<double>,
Eigen::Lower|Eigen::Upper > cg;

cg.compute ( matrix_A );
Eigen::VectorXd u = cg.solve ( vector_b );

And obtain the expected solution :
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We stress again that this example shows a rather rudimentary way of using finite
elements in . We are working hard to reach a more elegant, compact and high-
level style. For instance, the numbering of vertices should be automated. Also, the user
should have the possibility to declare the partial differential equation through a compact
declaration of the corresponding variational formulation.



Another limitation of is that, at present, finite element computations
are rather slow. This is so because each docking operation implies a lot of symbolic
calculations; the same happens when we differentiate and then integrate functions. There
are two ways of circunventing this limitation. The first one is : if your mesh is made of
identical finite elements (like the example in the present paragraph), you can compute
the elementary matrix just once and then assembly the global matrix from it. It will
surely be much faster. A second way around is a deep optimization of the
library, object of on-going work. A significant part of the symbolic calculations should
be done just once, when the finite element is declared. Only a small chunk of symbolic
computation will be performed at docking and later, when we build the elementary
matrix.



8. A closer look at cells and meshes

This section gives details about cells and meshes.

8.1. Building cells and meshes

As we have already seen in examples in previous sections, cells and meshes are
created by declaring them as Cell or Mesh objects and by providing specific options to
their constructor, by means of tags. For instance :

Cell SW ( tag::vertex ); // and the same for vertices SE, NE, NW
Mesh south ( tag::segment, SW.reverse(), SE, tag::divided_in, 10 );
// similar declarations of east, north, west
Mesh rectangle ( tag::rectangle, south, east, north, west );

Paragraph 9.2 gives more details about tags.
Internally, implements cells and meshes as persistent objects, built using

the new operator and thus having no syntactic scope. Objects belonging to classes Cell

and Mesh are just a wrapper around a persistent core (cell or mesh). When they go out
of scope, the wrappers are destroyed but the core remains alive. If a cell or mesh is no
longer needed, the user must explicitly dispose of it, as explained in paragraph 9.3.

Cells and meshes are unique objects, it makes no sense to copy them. A statement
like Cell copy of A = A will make a copy of the wrapper but it will refer to the same cell
A. If you change e.g. a coordinate of copy of A, the coordinate of A will also change. That
is, wrapper classes Cell and Mesh can be viewed as customized pointers. This is useful if
we need to create many meshes in a loop, as shown in paragraph 8.2. However, there are
operations which do create a new cell or mesh. There are also operations which create
a new cell or mesh only if necessary, otherwise they will return an existing cell or mesh.
Paragraph 8.10 gives a complete list.

Recall that, in , cells and meshes are oriented. When a cell is declared, it
is built as positive and has no reverse. Its reverse is a negative cell and will be built
only if necessary. Cells have a method reverse which does the following. It checks if the
reverse object has already been built; if yes, it returns that object; otherwise, it builds
the reverse cell on-the-fly and returns it. Paragraph 8.7 gives a more detailed explanation
about orientation of cells and meshes.

Meshes have also a reverse method. Note that reverse meshes exist always (negative
meshes are temporary objects built on-the-fly).

At a basic level, the only situation when you need the reverse method for cells is
when you declare a segment Mesh (you must provide a negative Cell as starting point).
You will occasionaly need to use the reverse method for meshes (for instance, if you
intend to join two meshes, their common boundary must have a certain orientation when
seen from a mesh and the opposite orientation when seen from the other mesh). In the
example in paragraph 1.3, reverses of meshes CD and BC are used.



8.2. A ring-shaped mesh

For creating many meshes within a cycle, we can view a Cell object as a (cus-
tomized) pointer to a persistent core cell, and the same for Meshes. They are cheap to
store and to copy. We call these customized pointers “wrappers”; their behaviour is de-
scribed in some detail in paragraph 9.3.

Manifold RR2 ( tag::Euclid, tag::of_dim, 2 );

Function xy = RR2.build_coordinate_system ( tag::Lagrange, tag::of_degree, 1 );

Function x = xy[0], y = xy[1];

short int n_sectors = 15;

double step_theta = 8*atan(1.)/n_sectors;

short int radial_divisions = 10;

short int rot_divisions = 5;
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// start the process by building a segment

Cell ini_A ( tag::vertex ); x(ini_A) = 1.; y(ini_A) = 0.;

Cell ini_B ( tag::vertex ); x(ini_B) = 2.; y(ini_B) = 0.;

Mesh ini_seg ( tag::segment, ini_A.reverse(), ini_B,

tag::divided_in, radial_divisions );

Mesh prev_seg = ini_seg;

Cell A = ini_A, B = ini_B;

list < Mesh > sectors;



for ( short int i = 1; i < n_sectors; i++ )
{ double theta = i * step_theta;

// we build two new points
Cell C ( tag::vertex ); x(C) = cos(theta); y(C) = sin(theta);
Cell D ( tag::vertex ); x(D) = 2.*cos(theta); y(D) = 2.*sin(theta);
// and three new segments
Mesh BD ( tag::segment, B.reverse(), D, tag::divided_in, rot_divisions );
Mesh DC ( tag::segment, D.reverse(), C, tag::divided_in, radial_divisions );
Mesh CA ( tag::segment, C.reverse(), A, tag::divided_in, rot_divisions );
Mesh quadr ( tag::quadrangle, prev_seg, BD, DC, CA );
sectors.push_back ( quadr );
prev_seg = DC.reverse();
A = C; B = D; }

// we now build the last sector, thus closing the ring
// prev_seg, A and B have rotated during the construction process
// but ini_seg, ini_A and ini_B are the same, initial, ones
Mesh outer ( tag::segment, B.reverse(), ini_B, tag::divided_in, rot_divisions );
Mesh inner ( tag::segment, ini_A.reverse(), A, tag::divided_in, rot_divisions );
Mesh quadr ( tag::quadrangle, outer, ini_seg.reverse(), inner, prev_seg );
sectors.push_back ( quadr );

Mesh ring ( tag::join, sectors );
ring.export_msh ("ring.msh");

Note how we use a version of the Mesh constructor with tag::join taking as
argument a list of Meshes; we have already seen it in paragraph 2.6.

We might have set curved boundaries by using a submanifold of R
2, like in

paragraph 2.8.
See also paragraph 9.7.

8.3. Lists of cells inside a mesh

As explained in paragraph 1.2, a Mesh is roughly a list of cells. Internally,
keeps lists of cells of each dimension, up the the maximum dimension which is the
dimension of the mesh. Thus, if msh is a Mesh object, modelling a mesh of triangles,
then msh.core->cells[0] is a list of pointers to cells holding all vertices of that mesh,
msh.core->cells[1] is a list of pointers to cells holding all segments and msh.core->

cells[2] is a list of pointers to cells holding all triangles.
Thus, we could use a loop like the one below for iterating over all segments of the

mesh.

for ( auto it = msh.core->cells[1].begin();
it != msh.core->cells[1].end(); it++ )

{ auto seg = *it; do_something_to (*seg); }

If you are not familiar with the notion of iterator over a list (or over other
containers) in C++, this may be a good time for you to read an introductory book on
the C++ Standard Template Library (STL).

The auto keyword tells the C++ compiler to guess the type of a variable according to
the expression used to initialize it.



Note that the above code only works for a positive mesh. Paragraphs 8.5 and 8.6
describe nicer ways to iterate over cells of a mesh.

On the other hand, a cell is roughly defined by its boundary which in turn is
a mesh of lower dimension. Thus, if hex is a Cell object modelling a hexagon, then
hex.boundary() is a Mesh object modelling a one-dimensional mesh (a closed chain of six
segments). So, if we want to iterate, say, over all vertices of that hexagon, we can use a
loop like below.

auto & li = hex.boundary().cells[0];
for ( auto it = li.begin(); it != li.end(); it++ )
{ auto P = *it; do_something_to (*P); }

Note that the above only works if hex is a positive cell. Also, we have no guarantee
about the order in which the vertices will show up in the loop. Paragraph 8.6 describes
other ways of iterating over one-dimensional meshes, which follow the natural order of
the vertices or segments.

8.5. Iterators over cells

This paragraph assumes that the reader is familiar to the notion of iterator in C++. If
this is not the case, you should read an introductory book on the C++ Standard Template
Library (STL) before proceeding.

As explained in paragraphs 1.2 and 8.3, a mesh is essentially a collection of cells. In
many situations, we may want to iterate over all cells of a mesh.

Suppose we have a mesh msh of rectangles. If we want to do something to each
rectangle, that is, to each two-dimensional cell, we could use a code like

for ( auto it = msh.core->cells[2].begin();
it != msh.core->cells[2].end(); it++ )

{ auto cll = *it; do_something_to (*cll); }

This style is slightly cumbersome and doesn’t work for negative meshes, so we
provide specific iterators. The code above is equivalent to

CellIterator it = msh.iter_over ( tag::cells_of_dim, 2 );
for ( it.reset(); it.in_range(); it++ )
{ Cell cll = *it; do_something_to (cll); }

Paragraph 9.2 gives some details about tags.
In the above code you may note that these iterators obey to syntactic conventions

slightly different from the ones in the Standard Template Library. We have chosen that,
when we want to start an iteration process, we set the iterator in a starting configuration
by using a reset method rather than through an assignment like it = container.begin().
Similarly, when an iterator has offered access to all cells of a mesh and cannot find other
cells, it goes into a state which can be checked using its in range method rather than
by testing equality with some abstract object like container.end(). We have kept the
syntax it++ for advancing an iterator in the process of running over cells, offering also
the equivalent alteratives ++it and it.advance(). We have also kept the notation *it

for dereferencing a CellIterator; this operation returns a reference to a Cell object. Of



course, dereferencing a CellIterator does not produce a new cell, just provides access to
a previously built cell (see also paragraph 8.10).

If we want to iterate over all vertices of the mesh, we can use

CellIterator it = msh.iter_over ( tag::cells_of_dim, 0 );
for ( it.reset(); it.in_range(); it++ )
{ Cell P = *it; do_something_to (P); }
// or, equivalently :
CellIterator it = msh.iter_over ( tag::vertices );

If we want to iterate over all segments of the mesh, we can use

CellIterator it = msh.iter_over ( tag::cells_of_dim, 1 );
for ( it.reset(); it.in_range(); it++ )
{ Cell seg = *it; do_something_to (seg); }
// or, equivalently :
CellIterator it = msh.iter_over ( tag::segments );

Note that an iterator running through cells of maximum dimension, that is, of
dimension equal to the dimension of the mesh, may produce negative cells if the mesh
contains them. Paragraph 8.7 discusses this possibility. Iterators over cells of lower
dimension produce always positive cells.

We can force an iterator over cells of maximum dimension to produce only positive
cells by adding a tag::force positive as in

CellIterator it = msh.iter_over ( tag::cells_of_dim, 2, tag::force_positive );

Note that it is not safe to modify a mesh while iterating over its cells. After
modifying a mesh, you may re-use a previously declared iterator by resetting it. An
exception to the above rule happens for one-dimensional meshes, described in paragraph
8.6.

If we only want to know how many cells there are in a certain mesh, instead of using
msh.core->cells[d].size() (d being the desired dimension of the cells) we may use the
method number of :

short int d = 2;
size_t n = msh.number_of ( tag::cells_of_dim, d );

Expression msh.number of ( tag::vertices ) is equivalent to msh.number of ( tag::cells

of dim, 0 ), while msh.number of ( tag::segments ) is equivalent to msh.number of ( tag::

::cells of dim, 1 ).
Paragraph 8.6 describes iterators specific to one-dimensional meshes.

8.6. Iterators over chains of segments

One-dimensional meshes have a specific structure (technical details provided in
paragraph 9.14) so we provide specialized iterators. Unlike the iterators described in
paragraph 8.5, which sweep the mesh in a rather unpredictible order, the iterators below
follow the natural order of the cells (either vertices or segments) given by the topology of
the mesh.

The syntax is the same as for higher-dimensional meshes :



Mesh chain ( tag::segment, A.reverse(), B, tag::divided_in, n );
// A and B are (positive) vertices, n is an integer

CellIterator it1 = chain.iter_over ( tag::cells_of_dim, 1 );

for ( it1.reset(); it1.in_range(); it1++ )
{ Cell seg = *it1; do_something_to (seg); }

CellIterator it0 = chain.iter_over ( tag::cells_of_dim, 0 );

for ( it0.reset(); it0.in_range(); it0++ )
{ Cell P = *it0; do_something_to (P); }

// or, equivalently,
CellIterator it0 = chain.iter_over ( tag::vertices );

CellIterator it1 = chain.iter_over ( tag::segments );

Unlike iterators over cells of meshes of dimension 2 or higher, presented in paragraph
8.5, iterators over one-dimensional meshes require the mesh to be connected.

A connected one dimensional mesh can be either an open chain of segments or a
closed one (a loop). For an open chain, it0 will begin at the first vertex and end at the
last vertex, it1 will begin at the first segment and end at the last segment. For a loop,
they will begin at some arbitrary vertex or segment in the chain and produce all the
vertices or segments following the natural order given by the topology of the mesh.

If we want to start at a specific location, we can make a reset call with one
argument. For iterators over vertices, this argument should be a vertex, while for
iterators over segments, this argument should be a segment. If such an argument is given,
then the iteration process will begin at that particular vertex or segment. This special
kind of reset can be used for an open chain or a closed one, but beware : if applied to an
open chain, the vertices or segments previous to the provided argument will not show up
in the iteration process.

Note that it0 produces positive points, while it1 produces oriented segments
(positive or negative). We may enforce that we only want positive segments by adding
the tag::force positive, as shown in paragraph 8.7.

There are also reversed versions of these iterators (they go backwards), obtained by
adding the tag::reverse :

CellIterator it1r = chain.iter_over ( tag::segments, tag::reverse );
CellIterator it0r = chain.iter_over ( tag::vertices, tag::reverse );

Method number of works just as for higher-dimensional iterators (see paragraph 8.5).
One-dimensional meshes have also methods first vertex, last vertex, first segment

and last segment which return the cell described by their names. They should only
be used for an open chain (not for a loop). Note that both Mesh::first vertex and
Mesh::last vertex return positive vertices, unlike the Cell::base method (described in
paragraph 1.2) which returns a negative vertex. [this should change]

Recall that it is not safe to modify a mesh while iterating over its cells. After
modifying a mesh, you may re-use a previously declared iterator by resetting it.
However, if you modify a one-dimensional mesh and change its topology (cut a loop, thus
making it an open chain, or contrarywise, close a chain, thus making it a loop), then
you cannot re-use a previously declared iterator on that mesh (you must declare a new



iterator). A change in the code is planned; when we reset an iterator, it will adapt itself
to the new shape of the mesh.

As explained in paragraph 8.10, dereferencing a CellIterator does not produce a
new cell, just provides access to a previously built cell.

8.7. Orientation of cells inside a mesh

In , all cells and meshes are oriented.
This can be confusing sometimes, so let’s have a closer look at a particular example.

A
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D

Consider a mesh tri mesh made of triangles. Unless requested otherwise, tri mesh

will be a positive mesh and all triangles composing it will also be positive. So, the
triangles composing tri mesh will have no reverse cell (there is no need for such).

However, the segments must have reverse. Consider triangle ABC for instance. Its
boundary is made of three segments; let’s look at AB for example, a segment having A

as base and B as tip. Now, a triangle BAD (no offense intended) also exists as part of
tri mesh. The boundary of BAD is made of three segments, one of them being BA, which
has B as base and A as tip. AB and BA are different Cell objects; each is the reverse of the
other. One of them is considered positive and the other is considered negative. Which is
which depends on which one was built first. So, all inner segments must have a reverse;
segments on the boundary of tri mesh will probably have no reverse.

For points (vertices), the situation is even more complex. Segment AB sees A as
negative because A is its base, but other segments like CA see A as positive.

Let’s look again at iterators described in paragraph 8.5. We now understand that
there is no point to have an iterator over oriented segments, or over oriented vertices, of
tri mesh. That’s why iterators over cells of lower dimension always produce positive cells.

We also understand that there is no difference between these two iterators :

CellIterator it1 = tri_msh.iter_over ( tag::cells_of_dim, 2 );
CellIterator it2 =

tri_msh.iter_over ( tag::cells_of_dim, 2, tag::force_positive );

because all triangles composing tri mesh should be positive (use it1, it is slightly
faster). However, if some of the triangles are negative it1 will behave differently
from it2. For instance, if tri mesh is the boundary of a polyhedron in R

3 and this
polyhedron touches other polyhedra (there are shared faces), then it is quite possible
that some of the triangles in tri mesh be negative. If you are aware that your mesh may
contain negative cells but you want to iterate over their positive counterparts, use the
tag::force positive.



We now turn to iterators over one-dimensional meshes, described in paragraph 8.6.
The two iterators below will probably have different behaviours, depending on which
segments happen to be positive :

CellIterator it3 = ABC.boundary().iter_over ( tag::segments );
CellIterator it4 =

ABC.boundary().iter_over ( tag::segments, tag::force_positive );

There is no difference between the two iterators below (both produce positive
points).

CellIterator it5 = ABC.boundary().iter_over ( tag::vertices, tag::reverse );
CellIterator it6 = ABC.boundary().reverse().iter_over( tag::vertices );

However, the two iterators below are quite different.

CellIterator it7 = ABC.boundary().iter_over ( tag::segments, tag::reverse );
CellIterator it8 = ABC.boundary().reverse().iter_over ( tag::segments );

Iterator it7 will produce segments AB, CA, BC (not necessarily beginning at AB), while
it8 will produce their reverses BA, AC, CB (not necessarily beginning at BA).

Incidentally, note that a segment, say, BC, may have no reverse, for instance if it is
on the boundary of tri mesh. However, its reverse CB will be built on-the-fly (and will
stay persistent) as soon as you use the reverse mesh ABC.boundary().reverse() in the
declaration of it6 (or it8, whichever happens first in your code).

8.8. Navigating inside a mesh

Objects in class Mesh have two methods, cell behind and cell in front of, which
provide access to the neighbours of a given cell within that mesh. Together with methods
base and tip of class Cell (mentioned in paragraph 1.2), they allow us to navigate inside
a mesh.
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Consider the mesh hex msh shown above, made of three hexagons. Pick one of them,
at random :

CellIterator it1 = hex_msh.iter_over ( tag::cells_of_dim, 2 );
it1.reset();
Cell hex_1 = *it1;

Now choose a random segment on the boundary of hex 1 :

CellIterator it2 = hex_1.boundary().iter_over ( tag::segments );
it2.reset();
Cell AB = *it2;



Take its tip :

Cell B = AB.tip();

Suppose now we want the next segment, within the boundary of hex 1 :

Cell BC = hex_1.boundary().cell_in_front_of ( B );

And now we may continue by taking the tip of BC and then the segment following it :

Cell C = BC.tip();
Cell CD = hex_1.boundary().cell_in_front_of ( C );

an so forth (this is how iterators over vertices and segments of one-dimensional meshes,
described in paragraph 8.6, are implemented internally).

Within the mesh hex msh, we can navigate towards a neighbour hexagon :

Cell hex_2 = hex_msh.cell_in_front_of ( CD );

Since we have picked hex 1 at random within hex msh, as well as AB within the
boundary of hex 1, there is no guarantee that we actually are in the configuration shown
in the picture above. That is, CD may be on the boundary of hex msh; there may be no
neighbour hexagon hex 2. If that is the case, the code above will produce an execution
error. See paragraph 8.9 for a way to check whether there is actually a neighbour cell
and thus avoid errors at execution time.

Note that faces point outwards. For instance, CD belongs to the boundary of hex 1

and points outwards, towards hex 2. Thus, hex msh.cell in front of(CD) produces hex 2.
On the other hand, hex msh.cell behind(CD) is hex 1.

Note also that CD does not belong to the boundary of hex 2. If we take hex 2.boundary()

.cell in front of(D) we will obtain not CD but its reverse, a distinct cell which we may
call DC. We have that hex msh.cell in front of(DC) is hex 1 and hex msh.cell behind(DC)

is hex 2.

8.9. Navigating at the boundary of a mesh

Consider the example in paragraph 8.8. Suppose you try to get a neighbour hexagon
which does not exist :

Cell no_such_hex = hex_msh.cell_in_front_of ( AB );

In DEBUG mode, you will get an assertion error. In NDEBUG mode, the behaviour is
undefined (often, a segmentation fault will arise). The DEBUG mode is explained at the
beginning of paragraph 9.12.

You may check the existence of the neighbour cell by using a tag::may not exist and
then the cell’s method exists :

Cell possible_hex = hex_msh.cell_in_front_of ( AB, tag::may_not_exist );
if ( possible_hex.exists() ) do_something_to ( possible_hex );
else cout << "no neighbour !" << endl;

thus avoiding errors at execution time.
Paragraph 8.10 gives a complete list of operations which return an existing cell or

build a new one.



8.10. Declaring cells and meshes

As explained in paragraph 9.3, the Cell class is just a thin wrapper around a
Cell::Core, and similarly for Meshes.

Statements below build a new wrapper for an existing cell or mesh. No new cell or
mesh is created :

Cell A = B; // B is a Cell
Cell C = *it; // ’it’ is a CellIterator
Mesh msh_copy = msh; // msh is a Mesh
Mesh bd = cll.boundary(); // cll is a Cell of dimension at least 2

Statements below search for an existing cell. If the respective cell exists, (a new
wrapper for) it is returned. Otherwise, an assertion error will occur in DEBUG mode;
in NDEBUG mode, the behaviour is undefined (often, a segmentation fault will arise). The
DEBUG mode is explained at the beginning of paragraph 9.12.

Cell A_rev = A.reverse ( tag::surely_exists ); // A is a Cell
// or, equivalently :
Cell A_rev ( tag::reverse_of, A, tag::surely_exists );

Cell tri1 = msh.cell_behind ( CD ); // CD is a Cell, a face within msh
Cell tri2 = msh.cell_in_front_of ( CD );
// or, equivalently :
Cell tri1 ( tag::behind_face, CD, tag::within_mesh, msh );
Cell tri2 ( tag::in_front_of_face, CD, tag::within_mesh, msh );
// or, equivalently :
Cell tri1 = msh.cell_behind ( CD, tag::surely_exists );
Cell tri2 = msh.cell_in_front_of ( CD, tag::surely_exists );
// or, equivalently :
Cell tri1 ( tag::behind_face, CD, tag::within_mesh, msh, tag::surely_exists );
Cell tri2 ( tag::in_front_of_face, CD,

tag::within_mesh, msh, tag::surely_exists );

Note that reverse meshes exist always (negative meshes are temporary objects built
on-the-fly).

Mesh rev_msh = msh.reverse(); // msh is a Mesh

Statements below search for an existing cell. If the respective cell exists, (a new
wrapper for) it is returned. Otherwise, a non-existent cell is returned (an empty
wrapper); the user has the possibility of inquiring the existence of the returned cell using
its method exists, as illustrated in paragraph 8.9.

Cell A_rev = A.reverse ( tag::may_not_exist ); // A is a Cell
// or, equivalently :
Cell A_rev ( tag::reverse_of, A, tag::may_not_exist );

Cell tri1 = msh.cell_behind ( CD, tag::may_not_exist );
// CD is a Cell, a face within msh
Cell tri2 = msh.cell_in_front_of ( CD, tag::may_not_exist );
// or, equivalently :
Cell tri1 ( tag::behind_face, CD, tag::within_mesh, msh, tag::may_not_exist );
Cell tri2

( tag::in_front_of_face, CD, tag::within_mesh, msh, tag::may_not_exist );



Statements below return a previously built cell, if it exists. If that object does not
exist, it is built on-the-fly.

Cell A_rev = A.reverse(); // A is some Cell
// or, equivalentely :
Cell A_rev ( tag::reverse_of, A );
// or, equivalentely :
Cell A_rev = A.reverse ( tag::build_if_not_exists );
// or, equivalentely :
Cell A_rev ( tag::reverse_of, A, tag::build_if_not_exists );

Statements below return a wrapper for a brand new cell or mesh :

Cell A ( tag::vertex );
Mesh AB ( tag::segment, A.reverse(), B, tag::divided_in, 15 );
// B is another vertex Cell
Mesh ABC ( tag::triangle, AB, BC, CA );
// BC and CA are segment Meshes, each having 15 segments Cells
// ... and many other shapes ...

Paragraph 9.6 explains similar operations on Cell::Cores.



9. Technical details

Sections 9 and 10 are meant for those intereseted in developing and extending
. Of course the ultimate documentation is the source code; these sections can

be used as a guide through the source code.

9.1. Namespaces and class names

All names in are wrapped into the namespace maniFEM. We recommend
using namespace maniFEM in your code, otherwise the text will become cumbersome. For
instance, you will have to write maniFEM::CellIterator instead of CellIterator, and so
on. We are using namespace maniFEM in the examples of this manual.

As a general rule, namespaces and class names are written with capital initial
letter : Cell, Mesh, Integrator, FiniteElement, VariationalFormulation. Namespace tag

(see paragraph 9.2) is an exception to the above rule. Namespace maniFEM itself is also an
exception, for merely aestetic reasons.

In , there are no private or protected class members or methods. Every-
thing is public; the user can make use of any class member if he or she so chooses. This
can be considered poor design; we endorse this criticism with no further comments.

However, some class members and methods are intended to be used by the final user,
while others are used in the internal implementation of the former. Classes intended
for basic usage are directly exposed in namespace maniFEM : Cell, Mesh, CellIterator,
Function, Manifold, VariationalFormulation, Integrator, FiniteElement, the rarely needed
Field and the even more rarely needed MeshIterator. Classes not intended for the final
user (at least not for the basic usage of ) have been hidden inside the above
mentioned names, e.g. Mesh::Positive, CellIterator::Over::SegsOfPosLoop::Positive,
Function::CoupledWithField::Scalar. Also, in the source code there are comments like

// do not use directly, let [some other method] do the job

9.2. Tags

We use extensively tags. These are structures gathered in the namespace tag. Most
of them contain no data; only their type is useful, at compile time.

A tag is used to clearly distinguish between functions with the same name (over-
loaded functions). For instance, in the code excerpt below five CellIterators are defined
(by means of the same method Mesh::iter over) which behave very differently (see para-
graphs 8.5 and 8.6).

// ’chain’ is a one-dimensional Mesh
CellIterator it1 = chain.iter_over ( tag::vertices );
CellIterator it2 = chain.iter_over ( tag::vertices, tag::reverse );
CellIterator it3 = chain.iter_over ( tag::segments );
CellIterator it4 = chain.iter_over ( tag::segments, tag::reverse );
CellIterator it5 = chain.iter_over ( tag::segments, tag::force_positive );

The above could be achieved by giving longer names to the functions, but we believe
tags make the code more readable. Besides that, in the case of constructors, we do not



have the choice of the name of the function (a constructor has the same name as its
class). uses tags extensively for constructors.

In , namespaces and class names begin with capital letter (see paragraph
9.1) The namespace tag (or maniFEM::tag if you are not using namespace maniFEM) is an
exception to the above rule. We prefer its name to have only lower case letters because
we want it to be discrete. For instance, if we wrote Tag::reverse of, the reader’s eye
would catch Tag much before reverse of; thus, tag::reverse of is more readable. Of
course, the final user has the choice of using namespace tag but beware, it has many
names which may conflict with the ones in your code.

Most tags have only lower-case letters and underscores. The exceptions are proper
names : tag::Lagrange, tag::Euclid.

9.3. Wrappers and cores

Designing and implementing has been a challenging endeavour. We had a
lot of fun and we have learned much along the process.

Take cells and meshes, for instance. As explained in paragraph 1.2, at the conceptual
level meshes are roughly collections of cells of the same dimension and cells are essentially
defined by their boundary which is a lower-dimensional mesh. This conceptual simplicity
does not survive to the demands of an efficient code (although it has been extremely
useful in the process of designing ; it should also be useful for learning and using
it).

Vertices (zero-dimensional cells) have no boundary at all. One-dimensional cells (seg-
ments) have all the same shape and have a rudimentary boundary (a zero-dimensional
mesh consisting of a base and a tip). In order to save space in the computer’s memory,
specific classes have been created for vertices and for segments.

Also, there are positive cells and negative cells, positive meshes and negative meshes.
A positive cell and its negative counterpart (its reverse) share some information. To save
memory space, negative cells are implemented in different classes from positive cells, thus
avoiding the storage of some of the redundant information.

We want, however, to manipulate all these different cells through a uniform interface,
which is where C++’s inheritance and polymorphishm mechanisms come handy. Thus,
there are classes Cell::Positive::Vertex, Cell::Positive::Segment and Cell::Positive,
all derived from Cell::Core::Positive. And we have Cell::Negative::Vertex, Cell::

::Negative::Segment and Cell::Negative, all derived from Cell::Core::Negative. Both
Cell::Core::Positive and Cell::Core::Negative are derived from Cell::Core.

On the other hand, we want cells and meshes to be persistent objects (not subject
to syntactic scope). We create them within some function and we want them to remain
alive after returning to the main program. Also, they are unique entities, it does not
make sense to copy them. This is why we have implemented Cell as a thin wrapper
around Cell::Core with most methods of Cell being delegated to Cell::Core. When it
goes out of its syntactic scope, the wrapper is destroyed but the Cell::Core object inside
remains intact. Also, you can copy the wrapper as in Cell A = B or Mesh BA = AB.reverse()

but these operations do not create new core objects, they just give new names to already



existing cells or meshes (Paragraph 8.10 gives more details). You can think of Cells and
Meshes as customized pointers towards Cell::Cores and Mesh::Cores, respectively.

Negative meshes contain no useful information (they only appear as boundaries of
negative cells) so there is no such class as Mesh::Negative. All Mesh::Cores are positive.
The wrapper class Mesh contains a pointer to a Mesh::Core and a flag telling it to reverse
everything if the mesh is to be considered negative. Zero-dimensional meshes (boundaries
of segments) are not stored at all. One-dimensional meshes have a specific structure (they
are chains of segments) and will receive in the future a specific treatment (a specialized
class).

To save memory, we don’t even keep the dimension of a cell as an attribute, it’s a
static property for vertices and segments, while for higher-dimensional cells it’s obtained
from the boundary’s dimension. The dimension of a mesh is not kept as an attribute
either; it’s computed on-the-fly by counting the levels of collections of cells the mesh is
made of (and then substracting one). For instance, the mesh in paragraph 1.1 has three
layers of cells : points, segments and squares.

Constructors for wrapper classes act as factory functions for the core object.
According to their arguments, they build different core objects.

Other objects have been implemented using the same logic of wrappers and core
objects. Iterators, fields, functions, manifolds.

9.5. Maximum topological dimension

assumes you will not build meshes of topological dimension above 3. If you
want to play with higher-dimensional meshes, you must relax this assumption through
the statement Mesh::set max dim (some-integer).

On the other hand, you may want to decrease the expected dimension. Suppose you
want to mesh surfaces in R

3. This means your maximum topological dimension will be
2 (this has nothing to do with the geometric dimension, here 3). Then you may state
your intention at the beginning of your program (before building any cell, before even
declaring the first vertex) through the statement Mesh::set max dim(2). This will decrease
the size of the Cell::Core objects in your code, thus saving some memory.

But beware, if you try to build a mesh of dimension higher than the one expected
by , you will get an assertion error at run-time in DEBUG mode, or some bizarre
behaviour (often a segmentation fault) in NDEBUG mode. The DEBUG mode is explained at
the beginning of paragraph 9.12.

9.6. Declaring cell cores

As explained in paragraph 9.3, the Cell class is just a thin wrapper around a
Cell::Core. While it is possible and useful to copy Cells (think of them as customized
pointers to Cell::Cores), objects in the Cell::Core class cannot be copied. Statements
below will produce a compilation errror.

Cell::Core A ( B ); // B is a Cell::Core

C = D; // C and D are Cell::Core objects



Objects in the Cell::Core class have an attribute reverse p which is nullptr if the
cell has no reverse (yet), otherwise points to the reverse core cell. Note that negative cells
must have a reverse, which is a positive cell. Positive cells may have no reverse.

Cell::Cores have a method method reverse, which requires a tag::build if not exists

as argument. It behaves similarly to the method reverse in class Cell, described in para-
graph 8.10. That is, a reverse Cell::Core object is built on-the-fly if needed :

Cell::Core * rev_cll_p = cll_p->reverse ( tag::build_if_not_exists );
assert ( rev_cll_p );

Recall that reverse meshes exist always (negative meshes are temporary objects built
on-the-fly).

Methods cell behind and cell in front of in class Mesh also accept a pointer to a
Cell::Core as an argument. When the tag::may not exist is provided, they return a
pointer towards the respective neighbour cell, if it exists, otherwise they return nullptr.

Mesh msh ( ... ); // some constructor
Cell::Core * f_p = ... ; // f_p points to a face within msh
Cell::Core * cll_p = msh.cell_in_front_of ( f_p, tag::may_not_exist );
if ( cll_p ) do_something_to ( *cll_p );
else cout << "no neighbour !" << endl;

When the tag::surely exists (or no tag at all) is provided as an argument, they
return a pointer to an existing cell :

Cell::Core * cll_p = msh.cell_in_front_of ( f_p, tag::surely_exists );
// or, equivalently :
Cell::Core * cll_p = msh.cell_in_front_of ( f_p );

// first_vertex, last_vertex, first_segment, last_segment

This version of cell behind and cell in front of should be slightly faster than the
one with tag::may not exist. However, you should only use it when you are confident
that the neighbour cell already exists. Otherwise, an assertion error will occur in DEBUG

mode; in NDEBUG mode, the behaviour is undefined (often, a segmentation fault will arise).
The DEBUG mode is explained at the beginning of paragraph 9.12.

Paragraph 8.10 explains similar operations on wrapper classes Cell and Mesh.

9.7. Disposing of meshes

In paragraph 1.3 and others we have shown how to join meshes. The question arises,
do we need to keep the intermediate meshes or just the final, big, one ? That’s up to the
user to decide. If we prefer to keep only the final mesh, we can “get rid” of the meshes
we don’t need anymore by means of the method dispose.

Note that it is not enough for the respective C++ object to go out of scope. In
, cells and meshes are created on the free store and survive outside their

syntactic scope (see paragraph 9.3). The user must release them explicitly.
For instance, in paragraph 1.3, after building L shaped, we may add the following

lines of code :

BC.dispose(); // BC.reverse() will be discarded, too



CD.dispose(); // CD.reverse() will be discarded, too
ABCD.dispose(); CEFD.dispose(); BGHC.dispose();

The dispose operation will only discard component cells which belong to no other
mesh. The shread method can be used to forcefully discard all cells in the mesh, but the
need for such should be rare.

9.8. About init cell (outdated)

The Cell class has static attributes init cell, init cell r, data for init, data for init r.
The attribute init cell is a list of pointers to functions to be called by the constructor
of a positive cell, while data for init is a void pointer which can be used to pass sup-
plementary information to init cell. Attributes init cell r and data for init r fulfill a
similar task when building negative cells.

For instance, Manifold::coordinate system inserts into the list Cell::init cell[0] a
call to Mesh::prescribe on which in turn calls FunctionOnMesh::prescribe on in order to
prepare the ground for instructions like x == 1.0 to produce the desired effect after the
creation of each point.

Another example is the constructor FiniteElement::Lagrange::Q1 which adds a call
to FiniteElement::Lagrange::Q1::enumerate new vertex to the list Cell::init cell[0].
This way, future vertices will receive automatically a size t label, to be used by Lagrange
finite elements.

9.10. Programming style

I (Cristian) have chosen some program-writing conventions which may seem unusual
for other people. For instance, most programmers use braces like this

for ( ... ) {
statement 1;
statement 2;
statement 3;

}

or perhaps like this

for ( ... )
{

statement 1;
statement 2;
statement 3;

}

I just can’t accept the idea that a brace opens more to the right that it closes, or
at the same point. For me, a pair of braces should open at some point to the left and
close at some point to the right, and the statements should be between them. That’s
how parentheses have been designed to be used. So I irreverently decided that my blocks
will look like this.

for ( ... )
{ statement 1;



statement 2;
statement 3; }

I am aware I am violating conventions which are almost universally accepted. Sorry
about that.

On the other hand, I am very fussy about indentation. I guess my mind has been
formatted by Python.

CellIterators obey to syntactic rules divergent from the conventions for iterators in
the Standard Template Library. See paragraph 8.5.

Also, the version numbering is somewhat unusual. The version consists merely of the
year and month. Perhaps a nostalgic memory of my first serious programming language,
FORTRAN 77 ?

9.11. Frequent errors at compile time

variable [name] set but not used [-Wunused-but-set-variables]
[name] defined but not used [-Wunused-function]

These are harmless warnings.
Some variables are initialized but never used. When we create a Manifold, the

constructor sets a global variable Manifold::current. Thus, can remember at
any time the geometry of the space and it can choose the right interpolation and
projection operations. From the compiler’s viewpoint, that Manifold oject is never used
again and so it issues a warning.

Also, some functions are never used. They are there mainly for historical reasons.
They have not been erased yet because part of their code may still be used in the future.

’class ManiFEM::Cell::Core’ has no member named ’name’
-- or --
’class ManiFEM::Cell::Core’ has no member named ’get_name’

It seems you are trying to compile your code in NDEBUG mode (see the beginning of
paragraph 9.12). In NDEBUG mode, cells and meshes do not have names.

cannot declare variable ’cll’ to be of abstract type ’ManiFEM::Cell::Core’
-- or similar for PositiveBaseCell or NegativeBaseCell or CoreMesh --

Classes Cell::Core, PositiveBaseCell and NegativeBaseCell are abstract and can-
not be instantiated. You must be more specific; PositiveVertex, NegativeVertex, Posi-

tiveSegment, NegativeSegment, PositiveCell and NegativeCell can be instantiated.

use of deleted function ’ManiFEM::PositiveVertex& ManiFEM::
PositiveVertex::PositiveVertex(const ManiFEM::PositiveVertex&)’
-- or similar for NegativeVertex or PositiveSegment or NegativeSegment --
-- or PositiveCell or NegativeCell or PositiveMesh --
-- or --
use of deleted function ’ManiFEM::PositiveVertex& ManiFEM::
PositiveVertex::operator=(const ManiFEM::PositiveVertex&)’
-- or similar for NegativeVertex or PositiveSegment or NegativeSegment --
-- or PositiveCell or NegativeCell or PositiveMesh or PosOneDimMesh --



Core cells and meshes cannot be copied. You cannot ask for things like cell 2 =

cell 1 or mesh 2 = mesh 1. See paragraph 9.6 for more details.

9.12. Frequent errors at run time

Some errors give explicit messages. For instance :

only one-dimensional meshes have first vertex
-- or --
ManiFEM::Cell& ManiFEM::Cell::tip(): Assertion ’dim == 1’ failed.

When you think your program is ready for shipping, you may want to speed it up
by adding the -dNDEBUG option to your compilation command (check your Makefile). You
may want to add other optimization options like -O2. Remember to make clean before
re-building your application.

If your program produces unpredictible, random errors at run-time, e.g. throws
segmentation fault, try running it in debug mode. To achieve this, simply remove any
-dNDEBUG option from your compilation command (check your Makefile). Remember to
make clean before re-building your application.

Errors described below are produced by assertions and thus will only show up in
DEBUG mode.

ManiFEM::Cell& ManiFEM::Cell::base(): Assertion ’dim == 1’ failed.
-- or --
ManiFEM::Cell& ManiFEM::Cell::tip(): Assertion ’dim == 1’ failed.

It seems you are trying to get the base or the tip of a cell of dimension different from
1. This does not make sense.

double& ManiFEM::OneDimField::operator()(ManiFEM::Cell&) const:
Assertion ’cll.real_heap_size() > index_min’ failed.

You probably tried to access a coordinate (or some other value) at a cell to which
no value has been associated. Either you picked a cell of a different dimension (e.g. a
segment instead of a vertex) or you are looking at a negative cell. Values are usually
stored at positive cells; negative cells have no information attached. For any cell, you
may use the positive attribute which is a pointer equal to this if the cell is positive or
points to the reverse if the cell is negative (so the reverse is positive). Or you may check
if a certain cell is positive or negative by using the method is positive (which simply
returns the result of the comparison this == this->positive). Paragraph 8.7 gives more
details about orientation of cells and meshes. See also paragraphs 8.10 and 9.6.

Note that, if seg is a segment (a one-dimensional cell), then seg.tip() is a positive
cell but seg.base() is a negative cell. So, you probably need to use seg.base().reverse()

instead. Iterators over cells of maximum dimension (that is, of dimension equal to the
dimension of the mesh) produce oriented cells (which may be positive or negative).
Consider using the tag::force positive. See paragraphs 8.5 and 8.6.

ManiFEM::Cell& ManiFEM::Mesh::cell_in_front_of(ManiFEM::Cell&,
const ManiFEM::tag::SurelyExists&): Assertion ’cll != NULL’ failed.



-- or --
ManiFEM::Cell& ManiFEM::Mesh::cell_behind(ManiFEM::Cell&,
const ManiFEM::tag::SurelyExists&): Assertion ’cll != NULL’ failed.

You are navigating dangerously close to the boundary of a mesh. See paragraph 8.9.

static size_t ManiFEM::Mesh::diff(size_t, size_t): Assertion ’a >= b’ failed.
-- or --
virtual void ManiFEM::PositiveCell::add_to(ManiFEM::CoreMesh*):
Assertion ’this->meshes.size() > 0’ failed.

You are trying to build meshes of dimension higher than those expects. Did
you re-define this expectation through the statement Mesh::set max dim ? Along your
program, you may have different maximum topological dimensions (that is, you may
use Mesh::set max dim several times) but, at each moment, you can only build meshes
of dimension up to the value most recently defined. See paragraph 9.5.

If gmsh shows an empty drawing, go to Tools → Options → Mesh. For viewing one-
dimensional meshes, you need to select 1D Elements.

9.14. Chains of segments

One-dimensional meshes are special. They are mere chains of segments, connected or
disconnected. If they are connected, they may be open chains or closed ones (loops).

We want iterators over cells of one-dimensional meshes to behave orderly. If the
chain is closed, we want the iterator to follow the natural order of the segments. If the
chain is open, we want more, we want the iterator to begin at one end and to go through
until it meets the other end. These requirements are not compatible with the idea of a
disconnected mesh.

So, we have chosen the following solution. One-dimensional meshes are implemented
in class Mesh::OneDim::Positive and have two attributes (which other meshes have not)
first ver and last ver. Every time we change a one-dimensional mesh through add to,
remove from, glue on bdry of or cut from bdry of, the attribute first ver of the mesh
will be set to nullptr. This means the mesh is in an unordered state. It may even be
disconnected. This is also the state of a new, empty, mesh.

In the reset method of a CellIterator over a one-dimensional mesh, we first check
the attribute first ver of the mesh. If it is nullptr, this means the mesh is unordered,
it may even be disconnected. We then go through all segments and check the structure
of the mesh, asserting that it is connected, determining whether it is open or closed
and setting accordingly the members first ver and last ver. [implement this in methods
get first and get last]

If first ver is equal to Cell::ghost, this means that the chain is closed (it is a loop).
Any other value of first ver means that the chain is open and that its ends are stored as
first ver and last ver and can be used for initializing the iterator.

The Cell::ghost should, of course, not be used for any other purpose. It is the only
negative cell whose reverse p is nullptr. Its heaps have size zero.

A different kind of iterators is under construction. It will use a tag::unordered in
its declaration and will behave like an interator over cells of higher-dimensional meshes,



that is, it will not take into account the chain structure of a one-dimensional mesh.
These unordered iterators will accept to run over a disconnected mesh. Disconnected one-
dimensional meshes are used, for instance, in progressive meshing.

In the future, one-dimensional meshes will keep only a list of segments, without
storing the vertices. Or perhaps not even that, perhaps they will only keep first ver

and last ver.

9.15. The cloud

During the mesh generation process described in paragraph 10.5, we have to check
frequently the distance between some vertex on the evolving interface and all other
vertices of the interface (including other connected components). A direct comparison
with all vertices would be very time consuming, so we rely on a tree-like structure which
we call MetricTree and which eliminates many vertices from the list of candidates.*

The MetricTree is similar to quad- and oct-trees with two differences : there is no
assumption on the geometric dimension and the zones overlap. It is similar to m-trees,
just not balanced.

It works for a general metric space. Triangular inequality is assumed, as well as
symmetry. Because it is not balanced, it deals well with non uniform clouds of points,
that is, with clouds having zones with high density of points along with zones where the
points are spread at large distances.

There is no upper limit on the number of children. Actually, the average number of
children can be used as a hint about the dimension of the metric space (in the spirit of
Hausdorff dimension).

MetricTree has been implemented with the intent of having wide usability, indepen-
dently of . It is templated over the type of Points (the metric space) and over a
callable object returning the square of the distance between any two Points. However, it
still needs the touch of someone experienced in the subtleties of C++. Help is welcome.

We focus on the square of the distance rather than on the distance itself because it
is numerically cheaper (we prefer not to compute square roots). Of course there are parts
of the code where the true distance must be used (e.g. when it comes to the triangular
inequality). Even there, simple algebraic manipulations allow us to avoid computing any
square root.

The user interacts with the MetricTree through four methods. The constructor sets
the rank-zero distance and the ratio between successive distances (see below). Method
add adds a Point to the cloud and returns a pointer to a Node which the user must keep
and later provide to the remove method. The remove method removes a Node from the
MetricTree. Finally, and most importantly, method find close neighbours of receives a
Point P and a distance threshold and returns a list of Nodes near P. It is irrelevant whether
P belongs or not to the cloud (if it belongs, it will show up in the returned list, disguised
as a Node). The user can recover (a copy of) the Point from a Node using the attribute
point. We have not implemented a method for finding the n nodes closest to a given
point (we do not need such an operation for progressive mesh generation).

* MetricTree is also available separately at https://github.com/cristian-barbarosie/MetricTree



It is assumed that Points are cheap to copy. If this is not the case for your Points,
use pointers. uses wrappers, which are a sort of pointers (see paragraph 9.3).

Each node represents a point. Leaves have no special status. Each node has a rank
which is an integer, possibly zero, possibly negative. Children of a node N have rank equal
to rank[N] - 1. Nodes with rank zero have no special status. Leaves may have any rank,
positive, zero or negative. There is a root of course (a node with no parent). The root
has the highest rank. Even the rank of the root may be negative.

To each rank there is a distance dist associated. Children of a node N are no farther
than dist[rank[N]] from N. Note that a point P being at distance less than dist[rank[N]]

from N does not imply that P must be a child (not even an indirect descendant) of N. In
other words : zones overlap.

dist[k] is a geometric sequence with ratio ratio. ratio must be greater than two;
we recommend some value between 5 and 10. So, dist[k] == ratiok dist[0]. Recall that
k may be negative.

Besides the distance, to each rank k we associate a range which represents the sum
of distances of that rank and of all lower ranks. That is,

range[k] == dist[k] / ( 1 - 1 / ratio ) ; range[k] > dist[k].

This means that an indirect descendant of a node N cannot be farther than range[rank[N]]

from N. Again, the reverse may be false.

The above drawing shows a cloud of (randomly generated) points in R
2 organized

in a MetricTree. It also illustrates the process of find close neighbours of a given point.
This method takes two arguments : a Point (drawn in red) and a distance. It returns
a list (drawn in blue) of all Nodes in the cloud which are close enough to the red point
(closer than the given distance). It is irrelevant whether the red point belongs to the
cloud or not; if it belongs, it will be returned as element of the list.

The drawing above shows grey dots at nodes which have been analysed during the
process of find close neighbours (their distance to the red dot has been computed).
Lines without a dot represent nodes in the MetricTree which have not even been looked
at because their parent has decided (based on the triangular inequality) that they cannot
be close enough to the red dot. Their distance to the red point has not been computed,



thus alleviating the computational burden.
If you want to run this example on your computer, it suffices to download three files,

(Makefile, main-9.15.cpp and metric-tree-verbose.h) from https://github.com/cristian-

barbarosie/manifem/tree/master/src, then make run-9.15.

9.16. The cloud in progressive mesh generation

The use of MetricTree for progressive mesh generation (described in paragraph 10.5,
with examples in section 3) is tricky when we are meshing a submanifold of Rn (a curve
in R

2 or R3, a surface in R
3) because there are two distances we must deal with. There is

the global, Euclidian, distance in the surrounding space and there is the local distance on
the tangent space of the manifold. They are equal locally (at short distances) unless we
attach a specific Riemann metric to the manifold as shown in paragraphs 3.23 and 3.24.

Even if we don’t play with a specific Riemann metric, the Euclidian metric is
different, at large distances, from the metric on the manifold defined by means of
geodesics. And anyway, computing the distance by means of geodesics is not affordable
(it is too heavy computationally).

We have chosen the following work-out. We use a MetricTree with (the square of)
the usual Euclidian distance (which is computationally cheap). This means that a call to
MetricTree::find close neighbours of will produce a list which is too large in the sense
that it may contain points which are farther than the distance given as argument. The
calling program must then filter this list by measuring distances with the local metric.
The difference shouldn’t be important if we are careful to choose the desired distance

(be it a constant or a function) small when compared with the curvature of the manifold
(see paragraph 3.16).

If we define a non-uniform Riemann metric (as in paragraph 3.23), we must call
find close neighbours of with a modified value of the distance. If we define an anisotropic
Riemann metric (as in paragraph 3.24), we need a lower bound on the Rayleigh coef-
ficient of the matrix M (i.e. a lower bound on its eigenvalues, or, equivalently, an up-
per bound of the spectral radius of the inverse matrix) for computing the modified value
to provide to find close neighbours of. Providing separately the principal part and the
deviatoric part helps. The principal part is a positive scalar, while deviatoric part is a
matrix responsible for the anisotropy; this matrix should be semi-definite positive. Desir-
ably, the deviatoric part should be a singular matrix (having a null eigenvalue); this
way, the lower bound on the Rayleigh coefficient is simply the principal part. If we
provide only the sum M , will compute, at each step, the lower bound on the
Rayleigh coefficient, which may be a heavy computational burden. When the metric is
highly anisotropic, the list returned by method find close neighbours of will be singnifi-
cantly larger than the correct, filtered, list.



10. Internal details

This section contains material intended to assist the developer in reading the source
code of . It contains mainly drawings which document specific parts of .

Some components of (namely, those described in paragraphs 10.2, 10.3
and 10.4) are written in two “flavors”, a pretty version which is easier to read and an
ugly version which should be slightly faster. They are functionally equivalent. The first
one is recognizable by a tag::pretty. Reading both, side to side, should help the user
understand the “lower level” programming style in , so that later he or she may
write new functions for extending and generalizing .

10.2. Building a chain of segments

One of the simplest meshes is an open chain of segments. Constructor Mesh (

tag::segment,...), declared in mesh.h and defined in global.cpp, receives two vertices
(a negative one and a positive one) and the desired number of segments and builds the
chain. New vertices are built by using the constructor Cell ( tag::vertex ). Space coor-
dinates of each new vertex are defined by interpolating the coordinates of the two extrem-
ities of the chain. New segments are built by means of constructor Cell ( tag::segment,

A, B ), where A is a Cell::Negative::Vertex and B is a Cell::Positive::Vertex.

Note that the interpolation operation is a method belonging to space (an object
belonging to the class Manifold). For an Euclidian manifold, this is just a convex
combination of the values of the coordinates. However, for other manifolds it may be
a more complex operation. For an implicit manifold, it involves a projection operation
(paragraphs 2.3 – 2.9 show such examples). For a manifold defined through an external
parameter, the convex combination is performed on the external parameter and then the
space coordinates are computed accordingly (paragraphs . . . show such a situation).

10.3. Building a rectangular mesh

Constructor Mesh::Mesh ( tag::rectangle,...), declared in mesh.h and defined in
global.cpp, builds a rectangular mesh from its four sides (which are one-dimensional
meshes, more precisely, open chains of segments). No need to provide the number of
divisions, the four sides have already their internal divisions. Of course, opposite sides
should have the same number of (segment) cells.

Paragraphs 1.3, 1.4 and many others (e.g. in section 2) show the use of this
constructor.

Actually, the name rectangle is misleading. Perhaps a better name would be
quadrangle but even this is not general enough to describe the constructor’s ability to
build curved patches like the ones shown in paragraphs 1.1 or 2.6 – 2.9. Tags rectangle,
quadrangle and quadrilateral can be used interchangeably.

Providing a tag::with triangles makes the constructor cut each rectangle in halves;
results are shown in paragraphs 2.2 and 2.7.
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The coordinates of each new vertex are defined by interpolating the coordinates of
four vertices on the four given sides, as shown in the figure above. The complicated
formula for the coefficients (involving α3 and β3) is there to ensure a smooth transition
for the distribution of inner vertices in the case of non-uniform distribution along one or
several sides. Paragraphs 2.1, 2.8 and 2.10 show examples where this is useful.

The remarks made in paragraph 10.2 about the interpolation operation hold here.
Paragraph 2.6 shows an example where the interpolation operation consists of a convex
combination followed by a projection. Paragraph . . . shows an example where the convex
combination is done on an external parameter rahter than on the coordinates themselves.

10.4. Building a triangular mesh

Building a triangular mesh involves an algorithm much alike the one for a rectan-
gular mesh. A noteworthy difference is that the interpolation operation involves now six
vertices on the boundary of the triangle, as shown in figure below.
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The coefficients for the interpolation have simpler formulas when compared with the
ones in the constructor of a rectangle (presented in paragraph 10.3); the fact that we
interpolate from six vertices compensates that.

Examples are presented in paragraphs 1.4, 1.5 and 2.5



10.5. Progressive mesh generation

Constructor Mesh::Mesh ( tag::progressive, ... ), declared in mesh.h and defined in
progressive.cpp, builds a mesh on a given manifold starting with almost nothing. More
precisely, it starts with the boundary of the future mesh, then it moves this interface
with small steps, building the mesh behind it like a spider. Actually, if the manifold
is compact (like the sphere or the torus) and we want to mesh all of it, there will be
no boundary. In this case we can start the process by providing nothing more than the
manifold itself. Section 3 gives several examples.

This is a complex process, much more complex than building a regular mesh of
rectangles (as described in paragraph 10.3) or of triangles (as described in paragraph
10.4). The constructor delegates the job to the function progressive construct.

The mesh must follow the shape of the manifold; this is achieved by projecting
newly created vertices on the working manifold.

The initial interface may be disconnected. Even if the initial interface is connected,
it may become disconnected during the meshing process, if it touches itself (paragraph
10.8 discusses this event).

Detecting such touching points requires evaluating the distance between many pairs
of points. This may become extremely time consuming, unless special care is taken to
organize points belonging to the interface in a hierarchy allowing one to eliminate many
pairs of points from the evaluation process. Paragraph 9.15 describes this hierarchy.

The next few paragraphs describe specific parts of this process of progressive mesh
generation.

10.6. The normals

The meshing process described in paragraph 10.5 uses a set of normal vectors. Each
segment in the interface has associated to it a vector tangent to the working manifold
and normal to the interface (we can think of the interface as a curve embedded in that
two-dimensional manifold). These normal vectors provide the sense in which we want
the mesh to grow (to the left or to the right of the interface), that is, they define the
orientation of the manifold and of the mesh under construction. They are used when we
create a new vertex in order to decide its placement.

Actually, at the beginning of the process only one segment has an associated normal
vector. then propagates this normal vector to the neighbour segments, walking
along the current connected component of the interface. This means that, if there
are other connected components, they will have no normal vectors. When the current
connected component of the interface touches other connected components (this event
is discussed in paragraph 10.8), propagates the normal vectors to the new
connected component.

Each time a new segment is added to the interface (this happens in situations
described in paragraphs 10.7 and 10.8), the normal associated to the new segment must
be computed (propagated from neighbour segments).



10.7. Filling triangles

Perhaps the simplest part of the meshing process described in paragraph 10.5 is just
walking along the interface and adding new triangles.

A trivial case is when an angle is encountered which is close to 60◦ (see figure below
left). Then we only have to fill the space with a new triangle. Of course, before creating
this new triangle a new segment AB must be created (no new vertex is needed). Two old
segments must be removed from the interface and the new one must be added. Its normal
must be computed (see paragraph 10.6).
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A more complicated situation is when an angle is encountered which is close to 120◦

(see figure above right). A new vertex P is created; its position is defined based on the
two normals of the adjacent segments. Two new segments AP and BP are created, then two
new triangles are created and added to the mesh under construction. Two old segments
are removed from the interface then AP and BP are added to the interface (their normals
must be computed).

Special situations must be dealt with. For instance, if one or both neighbour angles
are also close to 120◦, we must take more vertices into account when we place the newly
created vertex P; figure below shows such situations.

Finally, if all angles of the current connected component of the interface are wide, we
may want to create a triangle “out of the blue”, like in figure below.

Every time a new vertex is created, we must check whether it came close to another
zone of the interface and take action as described in paragraph 10.8.

10.8. Touching the interface

During the meshing process described in paragraph 10.5, distinct zones of the
moving interface may come close to each other and the algorithm will eventually put
them in contact. Figure below shows the situation just prior to the contact. The
two zones may belong to different connected components of the interface, as in the
configuration shown below on the left. In this case, the two components will merge,



producing a new chain. The normal vectors will be propagated to the segments which
did not have an associated normal vector (see paragraph 10.6). But it may also happen
that they are part of the same connected component, see the drawing below on the right.
In this case, the current chain will split in two.

Methods glue two segs S and glue two segs Z deal with two possible ways in which
two zones of the interface may touch, independently of whether the two zones belong
to the same connected component or not. In the drawing below on the right hand side
an S-shaped connection is created, while in the other drawing a Z-shaped connection is
created.
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Index

boundary of a cell : 1.2, 8.3
cell : 1.2, 8.1
cloud : see MetricTree

dimension of a cell or mesh : 1.2, 9.3, 9.5
discarding a mesh : 9.7
docking (of a finite element on a cell) : 7.1
errors : 9.11, 9.12
Field : 6.1
finite element : section 7
Function : 1.6, 6.1
interpolation of coordinates : 2.3 – 2.9, 10.2 – 10.4
iterators over cells : 8.5, 8.7
init cell : 9.8
joining meshes : 1.3, 1.4, 1.5, 2.1, 2.2, 2.4, 2.5, 2.6, 8.2
level set : see manifold, defined by an implicit equation
m-tree : 9.15
manifold, Euclidian : all over the place

(any code using must begin by declaring a Euclidian manifold)
manifold, defined by an implicit equation : 2.4 – 2.9, section 3
manifold, parametric : 2.13, 2.14
manifold, quotient : section 5
mesh : all over the place, esp. 1.2, 1.3, 8.1, 8.3, 8.7 – 8.10
MetricTree : 9.15, 9.16
negative Cell or Mesh : see orientation of Cells and Meshes
oct-tree : 9.15
orientation of Cells and Meshes : 1.2, 1.3, 8.1, 8.7, 9.6
orientation of a Manifold : 3.10
parametric manifold : see manifold, parametric
progressive mesh generation : section 3, 9.16, 10.5 – 10.8
projection, onto a manifold : 2.3 – 2.9
quad-tree : 9.15
quotient manifold : see manifold, quotient
reverse cell or mesh : see orientation of cells and meshes
segment Cells : 1.2
segment Meshes : 1.1 – 1.3, 9.14
set as working manifold : 2.8 – 2.10, 2.12, 3.1, 3.2, 3.3, 3.9, 3.14 – 3.24
tags : 9.2
wrapper : 8.1, 8.10, 9.3


